ABSTRACT Objective To develop a computational algorithm applied to magnetic resonance imaging for automatic segmentation of brain tumors. Methods A total of 130 magnetic resonance images were used in the T1c, T2 and FSPRG T1C sequences and in the axial, sagittal and coronal planes of patients with brain cancer. The algorithms employed contrast correction, histogram normalization and binarization techniques to disconnect adjacent structures from the brain and enhance the region of interest. Automatic segmentation was performed through detection by coordinates […]