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	❚ ABSTRACT
The set of somatic mutations present in a human tumor is a record of one or more mutational 
processes, each of which leaves distinct “signature” of mutation types. Mutation types can be 
classified in various ways, the most straightforward being the base change induced by a single-
base substitution (e.g., C>A, T>G, etc.). The advent of high-throughput DNA sequencing has 
facilitated the comprehensive, genome-wide assessment of mutation types in human tumors. 
This has spurred the development of methodology to tease apart the relative contribution of each 
mutational process by decomposing the set of all mutations into individual signatures. Many 
mutational signatures have known etiologies. Therefore, mutational signature inference can 
shed light on the causes of cancer and inform patient treatment. To date, most studies in this 
area have been performed on solid tumors; consequently, the application of existing methods to 
hematological cancers has yielded limited results. In this review, we provide an overview of the 
history and methodology behind mutational signature inference. Here, we present the challenges 
inherent in its application to hematological cancers and survey the work performed thus far. We 
highlight how recent research analyzing mutational signatures in normal blood cells can elucidate 
the beginning of a continuum of mutational processes, from normal hematopoiesis through 
mature hematological malignancy. Accurate characterization of mutational signatures in cancer 
development may aid in clinical diagnosis, prognosis, and treatment decisions.
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	❚ INTRODUCTION
Since the advent of high-throughput sequencing technologies, our 
understanding of the genetic underpinnings of human diseases has dramatically 
expanded.(1) Among the conditions most impacted by these advances is cancer, 
which is fundamentally driven by the accumulation of somatic mutations.(2) 

The ability to decode entire genomes has propelled research, providing 
unprecedented insights into the molecular basis of tumorigenesis and 
opening avenues for personalized medicine.(3)

A particularly intriguing discovery, dating back to the early 2000s, was 
the observation that mutations tend to occur in distinct patterns that are 
often associated with specific exposures. For instance, tumors arising in sun-
exposed skin commonly exhibit C>T and CC>TT transitions, reflecting 
DNA damage induced by ultraviolet (UV) light.(4) These recurring mutation 
patterns, now known as mutational signatures, suggest that a tumor’s 
mutational landscape carries a historical imprint of the biological processes 
and external agents that shaped its evolution.(3,5,6)
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Although groundbreaking, early studies of 
mutational patterns have faced several limitations.(5-7) 
Most focused exclusively on driver genes, which are 
under selective pressure, potentially obscuring the full 
spectrum of mutations. Moreover, these studies typically 
analyzed a limited number of mutations per sample 
and lacked robust computational tools to disentangle 
overlapping mutational processes. Consequently, 
these studies have only provided a partial view of the 
mutational processes operating in cancer genomes.

With the rise of whole-genome sequencing (WGS), 
it has become possible to catalog nearly all somatic 
mutations in a given tumor.(3) This technological 
leap facilitated a more comprehensive approach to 
mutational analysis. A pioneering study by Nik-Zainal 
et al. applied a mathematical framework based on 
non-negative matrix factorization (NMF) to identify 
mutational signatures from large-scale sequencing 
data of 21 breast cancer genomes.(6) Subsequent work 
by Alexandrov et al. refined and publicly released the 
model.(7) By incorporating all mutations within each 
tumor sample and analyzing patterns across multiple 
samples, this method revealed distinct mutational 
signatures, some of which could be linked to specific 
biological mechanisms or exposures - such as UV light.

Initially, these efforts focused on single base 
substitutions (SBSs), categorized using a 96-mutation 
framework that considers the trinucleotide context 
of each mutation (the mutated nucleotide plus its 
immediate 5’ and 3’ neighbors).(5) This allowed 
researchers to decompose complex mutational spectra 
into interpretable components. Over time, the scope of 
analysis broadened to include additional mutation types 
such as doublet base substitutions,(8) small insertions 
and deletions,(8) copy number alterations,(9, 10) structural 
variants,(11) and even RNA-based mutations.(12)

As the field matured, the catalogue of known 
mutational signatures expanded significantly. New 
computational tools tailored to different data types and 
research goals have emerged, enabling more precise 
and personalized analyses.(13-23) Recent discoveries have 
further elucidated the links between certain signatures 
and their underlying etiologies.(8) To support ongoing 
research and clinical use, the COSMIC (Catalogue 
of Somatic Mutations in Cancer) database(24) now 
maintains a curated and evolving collection of mutational 
signatures, currently in version 3.4, serving as a key 
resource for the scientific and medical communities.

This review provides an overview of the development 
and current state of mutational signature research. We 
describe the methodological advances that have enabled 
the creation of analytical tools for signature extraction, 

compare existing approaches, and explore the 
applications of mutational signatures in both research 
and clinical contexts. Finally, we discuss the current 
state of mutational signature research in hematological 
malignancies and its potential in this domain.

	❚ EXISTING TOOLS TO EXTRACT MUTATIONAL 
SIGNATURES
A mutational signature, assumed to be caused by a single 
biological process or exogenous exposure, is a pattern 
of mutation types specified by the percentage of each 
mutation type. The simplest mutation types are SBSs. 
Considering the redundancy of the two complementary 
DNA strands, there are six possible substitutions: 
C>A, C>G, C>T, T>A, T>C, and T>G. As flanking 
nucleotides can also influence mutagenic processes, 
SBS signatures also consider the bases on the 3′ and 5′ 
sides of the mutation site, therefore yielding 4 × 6 × 
4 = 96 possible types of SBS mutations. Since the first 
tool was reported in 2012, tools for mutational signature 
extraction have undergone significant developments. 
In addition to refinements of NMF, alternative 
mathematical approaches have been introduced.(16,18-21)

The original tool developed by Alexandrov 
et al., SigProfiler, has since been replaced by 
SigProfilerExtractor(15) and SigProfilerAssignment,(13) 
both of which were developed by the same laboratory 
but designed for distinct purposes. SigProfilerExtractor 
is intended for de novo extraction, whereas 
SigProfilerAssignment focused on signature fitting.

De novo extraction refers to the process of 
uncovering mutational signatures directly from a dataset 
(typically WGS data), without using previously-reported 
signatures.(25) This approach allows researchers to 
reveal both novel and known signatures. Computational 
comparisons, such as cosine similarity, are commonly 
employed to determine whether extracted signatures 
correspond to known signatures.

In contrast, the fitting strategy uses a predefined 
reference signatures, typically in the COSMIC database, 
to estimate the contribution of each known signature 
to the mutational profiles of individual samples. The 
COSMIC database(24) catalogs well over 100 human 
mutational signatures. Therefore, it is feasible to 
determine the composition of mutational signatures 
acting on a tumor by mathematically inferring the 
proportion of each known signature using the tumor’s 
counts of each type of mutation as input data.

In addition to the contributions of Alexandrov et al., 
several other research groups have developed tools with 
various features and purposes. The main differences 
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among these tools include the type of extraction (de 
novo versus fitting), input format (usually VCF files or 
mutational count matrices), mathematical approach, 
and intended application (e.g., some are optimized 
for specific cancers, such as mmsig for hematologic 
malignancies(22)).

Other tools available for signature extraction 
include PLDA,(19) MCSM,(17) SigTracer,(20) 
MutationalPatterns,(18) YAPSA (Yet Another Package 
for Signature Analysis),(14) mmsig,(22) MUSE-XAE(21) 
and MuSiCal.(16) A comparative description of these 
tools and their characteristics is provided in table 1.

Given the proliferation of tools and methods, two 
essential questions emerge: (i) What is the optimal 
strategy for extracting mutational signatures? (ii) 
Which tools are most effective? The literature reflects 
substantial variation in approaches, often leading to 
different results, even when applied to similar datasets.(16) 
Two key studies have provided insight into these 
questions. Maura et al. proposed a structured workflow 
for signature extraction(25) with a focus on hematological 
malignancies, while Medo et al. conducted a comparative 
evaluation of different tools.(26)

According to Maura et al., three main challenges 
complicate signature extraction:
•	 Nonuniqueness: Different combinations of signatures 

may explain the same mutational profile, especially 
for flat signatures that lack distinct peaks across 
trinucleotide contexts.

•	 Localized processes: Some mutational processes are 
region-specific and may be diluted when analyzing 
the genome as a whole.

•	 Signature bleeding: Signatures are erroneously 
assigned to samples in which they are not biologically 
present. This often results from pipelines that 
assume uniform exposure across heterogeneous 
cohorts.

To address these challenges, Maura et al. 
recommended a three-step workflow.
1.	 Begin with de novo extraction to identify cohort-

specific signatures,
2.	 Map these to known references (e.g., COSMIC) 

using similarity metrics,
3.	 Perform fitting using the identified signatures as 

a reference to quantify their contribution in each 
sample.
They also suggested applying this workflow to 

specific genomic regions as a strategy to address the 
issue of localized mutational processes. By focusing on 
regions known to be differentially affected in the cohort 
of interest, it becomes possible to detect signatures that 
would be missed in a whole-genome approach.

Medo et al.(26) found that tool performance 
varies depending on several factors, such as mutation 
burden per sample, type of downstream analysis, 
and cancer type. Their results indicated that while 
SigProfilerSingleSample (now discontinued) performed 

Table 1. Description of a selection of tools designed for mutational signature extraction

Tool name Data types Mathematical approach Extraction type Special trait

MCSM WGS MMM Fitting Evaluate strand or genomic region bias on genomic processes

Mix Gene panel MMM Fitting Use with clinical sequencing

mmsig WGS EM algortihm Fitting Built for hematologic malignancies

MUSE-XAE WGS Nonlinear encoder and linear decoder De novo and fitting -

MuSiCal WES, WGS 
(preferably)

mvNMF and likelihood-based  
sparse NNLS

De novo and fitting -

MutationalPatterns WGS NMF and NNLS De novo and Fitting Understand regional mutation spectra and strand asymmetry

Palimpsest WES, WGS NMF De novo and Fitting -

PLDA WGS PLDA Fitting Allowing the use of the same reference for all cancer types

SATS Gene panel pNMF and EM De novo and fitting Use with clinical sequencing

SigMA Gene panel NMF and NNLS De novo and fitting Mutational signature associated with HR deficiency

SigProfilerAssignment WES, WGS 
(preferably)

NNLS Fitting -

SigProfilerExtractor WES, WGS 
(preferably)

NMF and NNLS De novo and fitting -

SigTracer WGS Hierarchical Bayesian approach Fitting Analyze intra-tumor heterogeneity

YAPSA WES, WGS 
(preferably)

NNLS Fitting -

EM: expectation-maximization; HR: homologous recombination; MCSM: mutation-level covariate signature model; MMM: multinomial mixture model; mvNMF: minimum-volume NMF; NMF: nonnegative matrix factorization; NNLS: nonnegative least 
squares; PLDA: parallelized latent Dirichlet allocation; pNMF: poisson NMF; WES: whole-exome sequencing; WGS: whole-genome sequencing; YAPSA: yet another package for signature analysis. 
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well in low-mutation samples, SigProfilerAssignment 
and MuSiCal were better-suited for high-mutation 
datasets.

Additionally, significant progress is being made 
in extracting mutational signatures from sequencing 
methods other than WGS, such as whole-exome 
sequencing (WES)(15) and targeted panels.(27-30) Given 
the clinical predominance of WES and targeted 
approaches, these developments are critical for 
translating mutational signature research into practical 
healthcare applications. Moreover, the increased depth 
of coverage achievable by these methods can uncover 
low-frequency mutations that may be missed by WGS.(31) 
Tools capable of performing signature extraction in such 
contexts are listed in table 1, along with those designed 
for WGS data.

	❚MATHEMATICS UNDERLYING THE MUTATIONAL 
SIGNATURE ANALYSIS
In their simplest form, algorithms to infer molecular 
signatures de novo take as input a 96 × M matrix A, 
whose columns represent the M tumors sequenced, and 
whose rows represent all possible SBS mutation types. 
In its row i, column j entry, the input matrix A has the 
number of mutations of type i in tumor j.

The algorithm has two goals:
1)	 Infer the composition (i.e., prevalence of each 

mutation type) of each individual mutational 
signature present in the sample set.

2)	 Infer what proportion each mutational signature 
contributes to each tumor’s molecular landscape.
The main mathematical concept underlying this 

algorithm is NMF.(32) Briefly (for technical details, see (7)), 
the aim is to represent A as the product of two matrices 
W and H, that is A ≈ W * H where * denotes matrix 
multiplication. W is a 96 × k matrix whose rows 
represent the types of mutations and whose columns 
represent k distinct mutational signatures. W addresses 
Goal 1 above, as its columns give the prevalence of 
each mutational type in each of the k signatures. H is 
a k × M matrix that addresses Goal 2 by providing the 
relative contribution of each signature to an individual 
tumor in each column. The factorization A ≈ W * H 
(i.e. determining the matrices W and H) is typically 
performed using an iterative procedure that aims to find 
the entries for W and H that minimize the difference 
between A and W * H, computed as ||A - W * H||F, 
where ||X||F represents the Frobenius norm of X, 
defined as 

for any N x M matrix X with i, j entry xij.
Note that the factorization A = W × H as described 

here, assumes knowledge of the number k of distinct 
mutational signatures present in the set of tumors. In 
practice, k is unknown a priori. To determine the optimal 
value for k, the minimization procedure described above 
is typically run multiple times for each of several values 
of k. Each value of k is assessed for reproducibility and 
stability across the multiple runs. Also considered is the 
error between each tumor’s actual mutation pattern, as 
catalogued in matrix A, and that approximated by W × 
H. The value of k that is most reproducible, stable, and 
best mitigates the error rate is selected as the optimal 
value for k. 

The methodology for extracting signatures using 
mutations other than SBS (DBS, ID, CN, SV, and RNA-
based) is similar. There are also multiple alternative 
variants of the de novo extraction procedure; however, 
most are conceptually similar to the approach 
described here.

Unlike de novo extraction, fitting uses known and 
specific mutational signatures. Suppose there are n 
known SBS mutational signatures under consideration. 
They can be represented by a 96 × n matrix S, the 
columns of which provide the proportion of each 
mutation type in the corresponding signature. The 
counts of different single-base substitutions in a tumor 
may be represented as vector v with 96 entries, each 
entry corresponding to the number of mutations of 
one of the 96 types described above. Determining the 
optimal assignment of relative mutational signature 
contributions to the tumor mathematically corresponds 
to determining the vector a of length n that minimizes 
the difference between v and S × a. Here, the 96 entries 
in a give the estimated relative contributions of each 
mutational signature to the mutational spectrum of the 
tumor. The difference between v and S*a is computed 
as ||v - S × a||, where ||x|| denotes the length of 
vector x, defined as 

for a vector of length 96.
The naïve determination of the optimal value of a 

assumes that all n mutational signatures may be present, 
leading to overfitting. One approach to avoid overfitting 
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is to iteratively remove and add signatures and 
determine how the difference ||v - S × a|| is affected. 
The specific steps of this “forward stepwise” algorithm 
are outside the scope of this review, but details of one 
implementation may be found in Díaz-Gay et al.(13) In 
the end, some subset of the n mutational signatures are 
omitted from consideration, which results in a more 
reasonable number of inferred signature contributions.

	❚ CLINICAL RELEVANCE OF MUTATIONAL SIGNATURE 
INFERENCE
Inferring mutational signature composition from tumor 
DNA sequence can reveal the estimated number of 
mutations caused by each contributing signature. Aside 
from basic scientific insights, what more practical value 
might mutational signature inference have, particularly 
in the context of myeloid malignancies?

Some of the mutational signatures curated by 
COSMIC have known or suspected etiology. The 
initial and most well-established of these are signatures 
that were found in the first whole cancer genomes 
to be sequenced. These signatures are associated 
with smoking (particularly in lung cancer)(33) and UV 
light (particularly in skin cancer).(34) The primary 
cause of a tumor with mutation patterns dominated 
by one of these signatures would presumably be the 
corresponding exogenous exposure. Subsequently, 
several other exogenous causes of mutational signatures 
were identified. Treatments (for cancer and otherwise) 
associated with specific mutational signatures include 
temozolomide, platinum chemotherapy, azathioprine, 
thiopurine, duocarmycin, and melphalan.(35) Some of 
these signatures are particularly pronounced in post-
treatment tumors with underlying mismatch repair 
(MMR) deficiency. Therefore, treatment of MMR-
deficient patients may actually induce mutations that 
drive relapse or resistance to the treatment itself. For 
instance, acute lymphoid leukemia (ALL) patients 
treated with thiopurine chemotherapy were shown 
to acquire known relapse-associated mutations in the 
genes NR3C1, TP53, and NT5C2.(36) 

MMR-deficiency signatures are among the many 
that arise endogenously, whether from specific gene 
mutations or by other means. Endogenously-derived 
signature etiologies include 5-methylcytosine deaminase 
and apolipoprotein B editing complex (APOBEC) 
activity, polymerase eta errors, base excision repair 
deficiency, reactive oxygen species (ROS) damage, and 
homologous recombination (HR) deficiency, among 

others. Clustering based on some of these mutational 
signatures in multiple myeloma yielded groups with 
prognostic value.(37) Therefore, specific compositions 
of mutational signatures have the potential to inform 
clinical treatment and surveillance decisions. 

It should also be noted that the presence of certain 
mutational signatures may indicate greater sensitivity to 
specific cancer therapeutics. The most well-established 
example is that the presence of HR-deficiency signatures 
is closely associated with sensitivity to both platinum-
based chemotherapy and poly(ADP)-ribose polymerase 
(PARP) inhibitors in breast cancer. Other examples 
with potential clinical applications include APOBEC 
signatures and their association with sensitivity to  
ataxia telangiectasia and Rad3-related kinase (ATR) 
inhibition,(38) ROS damage signatures associated with 
MYCN amplification(39) and potentially with sensitivity 
to electron transport chain complex I inhibitors.(40) The 
potential link between ROS damage and therapeutic 
sensitivity may be particularly relevant in acute myeloid 
leukemia (AML), as McLeod et al. found a ROS 
damage mutational signature in a substantial proportion 
of pediatric and adult AML samples.(41)

	❚ ANALYTIC APPROACHES FOR MUTATIONAL 
SIGNATURE INFERENCE IN HEMATOLOGICAL 
MALIGNANCIES
The vast majority of work in cancer mutational signature 
analysis have been conducted in solid tumors.(6,42-46) 
Indeed, there are inherent challenges in the accurate 
calling of mutational signatures in hematological 
cancers. One issue is that the mutation rate tends to be 
much lower than that in solid tumors (Figure 1). This is 
particularly true of myeloid malignancies. For example, 
AML typically has some 100-fold fewer mutations 
than lung cancer and melanoma. Even calling somatic 
mutations is more difficult in blood cancers than in 
solid tumors.(47) To distinguish between somatic and 
germline variants in tumor DNA, researchers often rely 
on matched normal DNA from the same patient. Blood 
is a convenient source of normal DNA in patients 
with solid malignancies; however, it is unsuitable for 
hematological malignancies. Buccal swabs, fingernails, 
hair, saliva, and skin can serve as alternative sources 
of normal DNA. However, all of these sources have 
drawbacks, such as inadequate amounts of DNA 
or contamination with malignant blood cells. Some 
researchers culture skin fibroblasts; however, this is not 
a scalable solution.(48) 
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Another challenge is that de novo signature 
extraction requires a large patient cohort.(25) 
Hematological cancers are generally much rarer than 
many solid tumor types, which limits the number 
of available whole-genome sequences. In existing 
literature, the dominant signatures in blood cancers are 
“clock-like” signatures that are closely linked to aging.(22) 
As a result, lower-abundance signatures can be difficult 
to detect accurately. 

Despite these challenges, several groups have 
developed strategies to identify mutational signatures 
in hematological malignancies using standard tools. 
Researchers at the Memorial Sloan Kettering Cancer 
Center developed a platform, termed MSK-IMPACT 
Heme(47) which sequences 400 targeted genes that are 
known to play roles in hematological cancers. The use 
of a targeted panel greatly reduces costs compared to 
whole-genome sequencing and makes the sequencing 
of matched normal DNA economically feasible. In their 
study, the authors used either nail clippings or saliva as 
germline DNA sources. Owing to the limited number of 
mutations that can be detected by targeted sequencing, 
SigProfiler was applied to only the 11% of tumors with 
the highest mutational burden, all but two of which 
were lymphoid malignancies. In addition to age-related 
signatures, a variety of other signatures were detected, 

largely corresponding to the type of treatment that the 
patient received prior to sequencing. 

Diamond et al.(35) obtained similar results using 
whole-genome and whole-exome sequencing of myeloid 
malignancies, also applying SigProfiler. They exclusively 
found age-related signatures in treatment-naïve AML 
and patients undergoing radiation, but found treatment-
related signatures in patients undergoing either high-
dose melphalan- or platinum-containing therapies. 
In both cases, the study used standard methods to 
infer mutational signatures without tailoring them to 
hematological malignancies.

Hoang et al.(37) used the Palimpsest method,(49) 
primarily developed for solid tumors, to infer 
mutational signatures from whole-genome and whole-
exome sequencing of multiple myeloma samples. The 
authors identified multiple “flat” signatures, including 
one associated with homologous recombination repair 
deficiency, which was subsequently criticized as being a 
false positive finding.(22) As mentioned previously, flat 
signatures are difficult to distinguish from one another.

In response to some of these challenges, Rustad 
et al.(22) developed a method called mmsig, which was 
specifically designed for hematological malignancies. 
The authors demonstrated its efficacy on 82 multiple 
myeloid samples from the CoMMpass project,(50) 

Figure 1. Somatic mutation rates tend to be lower in hematological malignancies. (A) Total numbers of mutations for each tumor in the Pan-Cancer Analysis of Whole 
Genomes, grouped by tissue type. Hematological tumors are indicated with red arrow. (B) Same as panel (A), but here, tumors are grouped by specific cancer type. Red 
arrows indicate hematological cancers. Note that all hematological cancers are among the less frequently mutated types, save B-cell non-Hodgkin lymphoma (BNHL)

A  B
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142 chronic lymphocytic leukemia (CLL) patients 
from the CLL Genome Project,(51) and AML patients 
from TCGA.(52) The approach uses a dynamic error-
suppression procedure rather than relying on a hard 
percentage cutoff for signature contributions. They were 
able to show the ability to accurately infer mutational 
signatures, even from low numbers of mutations.

	❚MUTATIONAL SIGNATURES IN HEMATOLOGICAL 
MALIGNANCY AND THEIR PRECURSORS: A SURVEY 
OF DISCOVERIES THUS FAR
All hematological malignancies arise in cells with 
normal blood cell progenitors. Deep sequencing of 
hematopoietic stem cells (HSCs) has revealed distinct 
mutational signatures, even at very early stages of life, 
including in cord blood.(53) Some mature malignancies 
pass through precursor stages during which cells 
acquire additional mutations that confer a proliferative 
advantage. 

In the myeloid realm, one stepwise path is from normal 
HSCs to clonal hematopoiesis of indeterminate potential 
(CHIP) to clonal cytopenia of unknown significance 
(CCUS) to myelodysplastic syndrome (MDS) to AML. 
Along this continuum, mutational signatures have only 
been characterized in normal HSCs, CHIP, and AML. 
In individuals without mutagenic exposures such as 
smoking and chemotherapy, mutational signatures in 
all these entities tend to be dominated by the clock-
like signatures SBS1 and SBS5. (Note that here we 
use the nomenclature adopted from the COSMIC 
database https://cancer.sanger.ac.uk/signatures/). SBS1 
is caused by spontaneous deamination of methylated 
cytosines into thymines and is very closely tied to the 
cell cycle. The cause of the SBS5 signature is unknown, 
although it is strongly correlated with age. SBS32 has 
also been reported to be common in normal HSCs and 
AML.(53) However, its association with azathioprine 
treatment(54) raises questions regarding its validity. The 
observation of a dominant and consistent mutational  
pattern in normal HSCs led some researchers to 
define the overall pattern as its own signature, termed 
SBS-HSC.(31,35) Studies querying mutational signatures 
in CHIP have, unsurprisingly, revealed SBS-HSC or its 
components as dominant for the majority of individuals.(55,56)  
As compared to healthy individuals without CHIP, 
mutational patterns were found to be enriched in SBS4 
and SBS6.(57) SBS4 is associated with tobacco smoking, 
which is also linked to CHIP.(58) On the other hand, SBS6 
is associated with defective DNA mismatch repair, 
raising the possibility that this deficiency is partially 
responsible for CHIP mutations in some individuals.

 Although they also harbor pronounced clock-like 
mutational signatures, many lymphoid malignancies 
have signatures that are not typically found in myeloid 
malignancies. These include those attributed to 
APOBEC, activation-induced cytidine deaminase 
activity, DNA polymerase eta, UV light exposure, and 
MMR deficiency.(47) 

Recently, Alberge et al.(59) characterized mutational 
signatures in a cohort of patients with multiple myeloma 
(n = 812) and its precursors: Monoclonal Gammopathy 
of Undetermined Significance (MGUS; n = 37) and 
smoldering multiple myeloma (n = 120). They found 
21 different signatures across the cohort, of which eight 
were novel. Observed signatures with known etiologies 
included those associated with somatic hypermutation, 
activation-induced cytidine deaminase (SHM/AID), 
APOBEC, and ROS, along with the expected clock-
like signatures. Clonal hierarchy analysis allowed 
the authors to determine the temporal order of the 
different classes of signatures. They concluded that early 
mutations were largely driven by clock-like signatures 
and an AID signature before the onset of MGUS 
and smoldering multiple myeloma. APOBEC-driven 
mutational processes take hold after the initiation of 
these precursor conditions and then gradually develop 
into multiple myeloma.

Similar to solid tumors, patients with hematological 
malignancies who have undergone treatment typically 
carry signatures of the therapy. Indeed, analysis 
reveals signatures specifically attributed to thiopurine 
chemotherapy,(36) platinum chemotherapy,(35,47,60) 
melphalan,(61) and/or radiation treatment(35) that the 
patient had undergone. 

Table 2 catalogs the mutational signatures that have 
been reported to date in hematological malignancies.

	❚ CONCLUSION AND FUTURE WORK
Despite the significant progress made in the study of 
mutational signatures over the past decade, substantial 
room remains for further discovery and refinement. 
One of the main challenges is the variability in the 
outputs generated by different signature extraction 
tools, which makes it difficult to determine the most 
accurate or biologically meaningful results. Currently, 
most reference signature sets are designed to represent 
mutational processes across the entire human body. 
However, it is well established that mutational processes 
vary significantly across tissues. The development of 
tissue-specific reference signatures could help address 
issues such as signature bleeding and improve the 
biological relevance of signature assignments.
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of publicly-available whole-exome and whole-genome 
data sets from hematological malignancies. Most of 
these data sets have not been mined for mutational 
signatures. Applying mutational signature analysis 
to these diseases may also shed light on pre-leukemic 
conditions such as clonal hematopoiesis of indeterminate 
potential and clonal cytopenia of unknown significance, 
which are well studied in the literature but are not yet 
fully understood from a mutational process standpoint. 
Indeed, viewing mature hematological malignancy as 
the terminus of a continuous evolution from normal 
hematopoietic stem cells to precursor conditions to 
frank malignancy, examination of mutational signatures 
at each of these stages may provide clues as to which 
signatures are associated with progression. Thus, 
accurate characterization of mutational signatures in 
the early stages of leukemia development may aid in 
clinical diagnosis, prognosis, and treatment decisions.

	❚ DATA AVAILABILITY

The underlying content is contained within the 
manuscript.

Table 2. Description of the mutational signatures most commonly found in 
hematologic malignancies

Mutational process SBS signatures Malignancy type

Aging (clock-like signatures) SBS1 and 5 Ubiquitous signatures

Activity of APOBEC cytidine 
deaminase

SBS2 and 13 MM, MGUS, SMM, 
DLBCL, FL, B-ALL

Defective homologous DNA repair SBS3 MM

Defective DNA base excision repair SBS30 MM

AID SBS84 and 85 MM, MGUS, SMM, 
DLBCL, FL, B-ALL, CLL

Ultraviolet light exposure SBS7 DLBCL and mature T 
and NK neoplasms

Polymerase eta somatic 
hypermutation

SBS9 MM, MGUS, SMM, 
DLBCL

Defective DNA MMR SBS6, 15, 20, 21, 26 
and 44

MM, DLBCL, FL, BLL, 
mature T and NK 

neoplasms

ROS SBS18 MM, MGUS, SMM, 
B-ALL, T-ALL and AML

Unknown chemotherapy exposure SBS86 ALL and B-ALL

Thiopurine chemotherapy exposure SBS87 ALL and B-ALL

Platinum based chemotherapy 
exposure

SBS31 and 35 AML and MM

Melphalan exposure SBS-MM1 (or 99) AML

Unknown aetiology SBS8, 16 and 17 MM, MGUS, SMM
AID: activation-induced cytidine deaminase; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; B-ALL: 
B cell ALL; CLL: chronic lymphocitic leukemia; DLBCL: diffuse large B cell lymphoma; FL: follicular lymphoma; MGUS: 
monoclonal gamopathy of undetermined significance; MM: multiple myeloma; MMR: mismatch repair; NK: natural killer; 
SBS: single base substitution; SMM: smoldering multiple myeloma. 

In addition to improving the reference sets, it would 
be valuable to establish guidelines for tool selection 
based on cancer type or tissue context, as different 
tools show varying levels of accuracy depending on 
the setting. Similarly, a better understanding of the 
minimum number of mutations required to reliably 
extract each signature is required. Some signatures, 
particularly the flatter ones, are inherently more 
difficult to detect, and applying signature analysis to 
low-mutation samples without this knowledge may 
lead to misleading conclusions.

Another promising avenue for future research is the 
application of mutational signatures to noncancerous 
tissues. As this methodology expands beyond oncology, 
it opens up a broad range of opportunities for exploring 
mutational processes in other biological contexts such 
as aging, inflammation, and disease precursor states. 

Specifically within hematologic malignancies, 
research on mutational signatures remains relatively 
underdeveloped, particularly for myeloid neoplasms. 
Given the rapid evolution of tools and the increasing 
availability of large-scale public datasets, there is 
an opportunity to close this gap, even in the face of 
relatively low mutation rates. Table 3 provides a sample 

Table 3. Exemplary publicly-available data sources for mutational signature 
inference

Data source Data types Disease subtype(s) Number of 
patients

TARGET WES, WGS ALL 1006

TARGET WES, WGS AML 249

TCGA WES, WGS AML 200

TCGA WES, WGS Diffuse Large B-cell 
Lymphoma

58

BeatAML WES AML 534

MMRF-CoMMpass WES, WGS Multiple Myeloma 975

MP2PRT WES, WGS ALL 1507

CGCI WGS Burkitt Lymphoma 252

CGCI WGS Diffuse Large B-cell 
Lymphoma

66

The CLL Genome 
Project

WES, WGS Chronic Lymphocytic 
Leukemia

284

MDS Sequencing 
Project

WES Myelodysplastic Syndrome 42

All of Us WGS AML, MDS 1020

OHSU WES Chronic Myeloproliferative 
Disorders

158

ALL: acute lymphocytic leukemia; AML: acute myeloid leukemia; CGCI: the Cancer Genome Characterization Initiative; 
CLL: chromic lymphocytic leukemia; MDS: myelodysplastic syndrome; MMRF-CoMMpass: Multiple Myeloma Research 
Foundation-Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile; MP2PRT: Mo-
lecular Profiling to Predict Response to Treatment; OHSU: Oregon Health Sciences University; TARGET: Therapeutically 
Applicable Research to Generate Effective Treatments; TCGA: the Cancer Genome Atlas; WES: whole-exome sequencing; 
WGS: whole-genome sequencing. 
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