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ABSTRACT

The set of somatic mutations present in a human tumor is a record of one or more mutational
processes, each of which leaves distinct “signature” of mutation types. Mutation types can be
classified in various ways, the most straightforward being the base change induced by a single-
base substitution (e.g., C>A, T>G, etc.). The advent of high-throughput DNA sequencing has
facilitated the comprehensive, genome-wide assessment of mutation types in human tumors.
This has spurred the development of methodology to tease apart the relative contribution of each
mutational process by decomposing the set of all mutations into individual signatures. Many
mutational signatures have known etiologies. Therefore, mutational signature inference can
shed light on the causes of cancer and inform patient treatment. To date, most studies in this
area have been performed on solid tumors; consequently, the application of existing methods to
hematological cancers has yielded limited results. In this review, we provide an overview of the
history and methodology behind mutational signature inference. Here, we present the challenges
inherent in its application to hematological cancers and survey the work performed thus far. We
highlight how recent research analyzing mutational signatures in normal blood cells can elucidate
the beginning of a continuum of mutational processes, from normal hematopoiesis through
mature hematological malignancy. Accurate characterization of mutational signatures in cancer
development may aid in clinical diagnosis, prognosis, and treatment decisions.
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INTRODUCTION

Since the advent of high-throughput sequencing technologies, our
understanding of the genetic underpinnings of human diseases has dramatically
expanded.®” Among the conditions most impacted by these advances is cancer,
which is fundamentally driven by the accumulation of somatic mutations.?®
The ability to decode entire genomes has propelled research, providing
unprecedented insights into the molecular basis of tumorigenesis and
opening avenues for personalized medicine.®

A particularly intriguing discovery, dating back to the early 2000s, was
the observation that mutations tend to occur in distinct patterns that are
often associated with specific exposures. For instance, tumors arising in sun-
exposed skin commonly exhibit C>T and CC>TT transitions, reflecting
DNA damage induced by ultraviolet (UV) light.® These recurring mutation
patterns, now known as mutational signatures, suggest that a tumor’s
mutational landscape carries a historical imprint of the biological processes
and external agents that shaped its evolution.G>
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Although groundbreaking, early studies of
mutational patterns have faced several limitations.®”
Most focused exclusively on driver genes, which are
under selective pressure, potentially obscuring the full
spectrum of mutations. Moreover, these studies typically
analyzed a limited number of mutations per sample
and lacked robust computational tools to disentangle
overlapping mutational processes. Consequently,
these studies have only provided a partial view of the
mutational processes operating in cancer genomes.

With the rise of whole-genome sequencing (WGS),
it has become possible to catalog nearly all somatic
mutations in a given tumor.®) This technological
leap facilitated a more comprehensive approach to
mutational analysis. A pioneering study by Nik-Zainal
et al. applied a mathematical framework based on
non-negative matrix factorization (NMF) to identify
mutational signatures from large-scale sequencing
data of 21 breast cancer genomes.® Subsequent work
by Alexandrov et al. refined and publicly released the
model.” By incorporating all mutations within each
tumor sample and analyzing patterns across multiple
samples, this method revealed distinct mutational
signatures, some of which could be linked to specific
biological mechanisms or exposures - such as UV light.

Initially, these efforts focused on single base
substitutions (SBSs), categorized using a 96-mutation
framework that considers the trinucleotide context
of each mutation (the mutated nucleotide plus its
immediate 5° and 3’ neighbors).®) This allowed
researchers to decompose complex mutational spectra
into interpretable components. Over time, the scope of
analysis broadened to include additional mutation types
such as doublet base substitutions,® small insertions
and deletions,® copy number alterations, ' structural
variants,') and even RNA-based mutations.(?

As the field matured, the catalogue of known
mutational signatures expanded significantly. New
computational tools tailored to different data types and
research goals have emerged, enabling more precise
and personalized analyses.!*? Recent discoveries have
further elucidated the links between certain signatures
and their underlying etiologies.®) To support ongoing
research and clinical use, the COSMIC (Catalogue
of Somatic Mutations in Cancer) database® now
maintains a curated and evolving collection of mutational
signatures, currently in version 3.4, serving as a key
resource for the scientific and medical communities.

This review provides an overview of the development
and current state of mutational signature research. We
describe the methodological advances that have enabled
the creation of analytical tools for signature extraction,
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compare existing approaches, and explore the
applications of mutational signatures in both research
and clinical contexts. Finally, we discuss the current
state of mutational signature research in hematological
malignancies and its potential in this domain.

EXISTING TOOLS TO EXTRACT MUTATIONAL
SIGNATURES

A mutational signature, assumed to be caused by a single
biological process or exogenous exposure, is a pattern
of mutation types specified by the percentage of each
mutation type. The simplest mutation types are SBSs.
Considering the redundancy of the two complementary
DNA strands, there are six possible substitutions:
C>A, C>G, C>T, T>A, T>C, and T>G. As flanking
nucleotides can also influence mutagenic processes,
SBS signatures also consider the bases on the 3’ and 5’
sides of the mutation site, therefore yielding 4 X 6 X
4 = 96 possible types of SBS mutations. Since the first
tool was reported in 2012, tools for mutational signature
extraction have undergone significant developments.
In addition to refinements of NME alternative
mathematical approaches have been introduced.(!¢182)

The original tool developed by Alexandrov
et al., SigProfiler, has since been replaced by
SigProfilerExtractor™ and SigProfilerAssignment,®
both of which were developed by the same laboratory
but designed for distinct purposes. SigProfilerExtractor
is intended for de novo extraction, whereas
SigProfilerAssignment focused on signature fitting.

De novo extraction refers to the process of
uncovering mutational signatures directly from a dataset
(typically WGS data), without using previously-reported
signatures.® This approach allows researchers to
reveal both novel and known signatures. Computational
comparisons, such as cosine similarity, are commonly
employed to determine whether extracted signatures
correspond to known signatures.

In contrast, the fitting strategy uses a predefined
reference signatures, typically in the COSMIC database,
to estimate the contribution of each known signature
to the mutational profiles of individual samples. The
COSMIC database® catalogs well over 100 human
mutational signatures. Therefore, it is feasible to
determine the composition of mutational signatures
acting on a tumor by mathematically inferring the
proportion of each known signature using the tumor’s
counts of each type of mutation as input data.

In addition to the contributions of Alexandrov et al.,
several other research groups have developed tools with
various features and purposes. The main differences
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among these tools include the type of extraction (de
novo versus fitting), input format (usually VCEF files or
mutational count matrices), mathematical approach,
and intended application (e.g., some are optimized
for specific cancers, such as mmsig for hematologic

malignancies®).
Other tools available for signature extraction
include PLDA, MCSM, SigTracer,®

MutationalPatterns,"® YAPSA (Yet Another Package

for Signature Analysis)," mmsig,?® MUSE-XAE®

and MuSiCal.'® A comparative description of these

tools and their characteristics is provided in table 1.
Given the proliferation of tools and methods, two

essential questions emerge: (i) What is the optimal

strategy for extracting mutational signatures? (ii)

Which tools are most effective? The literature reflects

substantial variation in approaches, often leading to

different results, even when applied to similar datasets.'®)

Two key studies have provided insight into these

questions. Maura et al. proposed a structured workflow

for signature extraction® with a focus on hematological
malignancies, while Medo et al. conducted a comparative
evaluation of different tools.?®

According to Maura et al., three main challenges
complicate signature extraction:

* Nonuniqueness: Different combinations of signatures
may explain the same mutational profile, especially
for flat signatures that lack distinct peaks across
trinucleotide contexts.

Table 1. Description of a selection of tools designed for mutational signature extraction

Localized processes: Some mutational processes are
region-specific and may be diluted when analyzing
the genome as a whole.

Signature bleeding: Signatures are erroneously
assigned to samples in which they are not biologically
present. This often results from pipelines that
assume uniform exposure across heterogeneous
cohorts.

To address these challenges, Maura et al.

recommended a three-step workflow.

1. Begin with de novo extraction to identify cohort-
specific signatures,

2. Map these to known references (e.g., COSMIC)
using similarity metrics,

3. Perform fitting using the identified signatures as

a reference to quantify their contribution in each

sample.

They also suggested applying this workflow to
specific genomic regions as a strategy to address the
issue of localized mutational processes. By focusing on
regions known to be differentially affected in the cohort
of interest, it becomes possible to detect signatures that
would be missed in a whole-genome approach.

Medo et al.?® found that tool performance
varies depending on several factors, such as mutation
burden per sample, type of downstream analysis,
and cancer type. Their results indicated that while
SigProfilerSingleSample (now discontinued) performed

Tool name Data types Mathematical approach Extraction type Special trait
MCSM WGS MMM Fitting Evaluate strand or genomic region bias on genomic processes
Mix Gene panel MMM Fitting Use with clinical sequencing
mmsig WGS EM algortihm Fitting Built for hematologic malignancies
MUSE-XAE WGS Nonlinear encoder and linear decoder De novo and fitting
MuSiCal WES, WGS mvNMF and likelihood-based De novo and fitting
(preferably) sparse NNLS
MutationalPatterns WGS NMF and NNLS De novo and Fitting Understand regional mutation spectra and strand asymmetry
Palimpsest WES, WGS NMF De novo and Fitting
PLDA WGS PLDA Fitting Allowing the use of the same reference for all cancer types
SATS Gene panel pNMF and EM De novo and fitting Use with clinical sequencing
SigMA Gene panel NMF and NNLS De novo and fitting Mutational signature associated with HR deficiency
SigProfilerAssignment WES, WGS NNLS Fitting
(preferably)
SigProfilerExtractor WES, WGS NMF and NNLS De novo and fitting
(preferably)
SigTracer WGS Hierarchical Bayesian approach Fitting Analyze intra-tumor heterogeneity
YAPSA WES, WGS NNLS Fitting
(preferably)

EM: expectation-maximization; HR: homologous recombination; MCSM: mutation-level covariate signature model; MMM: multinomial mixture model; mvNMF: minimum-volume NMF; NMF: nonnegative matrix factorization; NNLS: nonnegative least
squares; PLDA: parallelized latent Dirichlet allocation; pNMF: poisson NMF; WES: whole-exome sequencing; WGS: whole-genome sequencing; YAPSA: yet another package for signature analysis.
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well in low-mutation samples, SigProfilerAssignment
and MuSiCal were better-suited for high-mutation
datasets.

Additionally, significant progress is being made
in extracting mutational signatures from sequencing
methods other than WGS, such as whole-exome
sequencing (WES)® and targeted panels.?” Given
the clinical predominance of WES and targeted
approaches, these developments are critical for
translating mutational signature research into practical
healthcare applications. Moreover, the increased depth
of coverage achievable by these methods can uncover
low-frequency mutations that may be missed by WGS.G!
Tools capable of performing signature extraction in such
contexts are listed in table 1, along with those designed
for WGS data.

MATHEMATICS UNDERLYING THE MUTATIONAL
SIGNATURE ANALYSIS

In their simplest form, algorithms to infer molecular

signatures de novo take as input a 96 X M matrix A4,

whose columns represent the M tumors sequenced, and
whose rows represent all possible SBS mutation types.

In its row i, column j entry, the input matrix 4 has the

number of mutations of type i in tumor j.

The algorithm has two goals:

1) Infer the composition (i.e., prevalence of each
mutation type) of each individual mutational
signature present in the sample set.

2) Infer what proportion each mutational signature
contributes to each tumor’s molecular landscape.
The main mathematical concept underlying this

algorithm is NME®? Briefly (for technical details, see ),

the aim is to represent A as the product of two matrices

W and H, that is A = W * H where * denotes matrix

multiplication. W is a 96 X k matrix whose rows

represent the types of mutations and whose columns
represent k distinct mutational signatures. W addresses

Goal 1 above, as its columns give the prevalence of

each mutational type in each of the k signatures. H is

a k X M matrix that addresses Goal 2 by providing the

relative contribution of each signature to an individual

tumor in each column. The factorization 4 = W * H

(i.e. determining the matrices W and H) is typically

performed using an iterative procedure that aims to find

the entries for W and H that minimize the difference
between A and W * H, computed as | |4 - W * H||,,

where ||X]||, represents the Frobenius norm of X,

defined as
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for any N x M matrix X with i, j entry x,.

Note that the factorization A = W X H as described
here, assumes knowledge of the number k of distinct
mutational signatures present in the set of tumors. In
practice, k is unknown a priori. To determine the optimal
value for k, the minimization procedure described above
is typically run multiple times for each of several values
of k. Each value of k is assessed for reproducibility and
stability across the multiple runs. Also considered is the
error between each tumor’s actual mutation pattern, as
catalogued in matrix A, and that approximated by W X
H. The value of k that is most reproducible, stable, and
best mitigates the error rate is selected as the optimal
value for k.

The methodology for extracting signatures using
mutations other than SBS (DBS, ID, CN, SV, and RNA-
based) is similar. There are also multiple alternative
variants of the de novo extraction procedure; however,
most are conceptually similar to the approach
described here.

Unlike de novo extraction, fitting uses known and
specific mutational signatures. Suppose there are n
known SBS mutational signatures under consideration.
They can be represented by a 96 X n matrix S, the
columns of which provide the proportion of each
mutation type in the corresponding signature. The
counts of different single-base substitutions in a tumor
may be represented as vector v with 96 entries, each
entry corresponding to the number of mutations of
one of the 96 types described above. Determining the
optimal assignment of relative mutational signature
contributions to the tumor mathematically corresponds
to determining the vector a of length n that minimizes
the difference between v and S X a. Here, the 96 entries
in a give the estimated relative contributions of each
mutational signature to the mutational spectrum of the
tumor. The difference between v and S*a is computed
as ||v -8 X a||, where ||x|| denotes the length of
vector x, defined as

for a vector of length 96.

The naive determination of the optimal value of a
assumes that all » mutational signatures may be present,
leading to overfitting. One approach to avoid overfitting
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is to iteratively remove and add signatures and
determine how the difference | |v - S X a|| is affected.
The specific steps of this “forward stepwise” algorithm
are outside the scope of this review, but details of one
implementation may be found in Diaz-Gay et al."» In
the end, some subset of the n mutational signatures are
omitted from consideration, which results in a more
reasonable number of inferred signature contributions.

CLINICAL RELEVANCE OF MUTATIONAL SIGNATURE
INFERENCE

Inferring mutational signature composition from tumor
DNA sequence can reveal the estimated number of
mutations caused by each contributing signature. Aside
from basic scientific insights, what more practical value
might mutational signature inference have, particularly
in the context of myeloid malignancies?

Some of the mutational signatures curated by
COSMIC have known or suspected etiology. The
initial and most well-established of these are signatures
that were found in the first whole cancer genomes
to be sequenced. These signatures are associated
with smoking (particularly in lung cancer)®® and UV
light (particularly in skin cancer).®¥ The primary
cause of a tumor with mutation patterns dominated
by one of these signatures would presumably be the
corresponding exogenous exposure. Subsequently,
several other exogenous causes of mutational signatures
were identified. Treatments (for cancer and otherwise)
associated with specific mutational signatures include
temozolomide, platinum chemotherapy, azathioprine,
thiopurine, duocarmycin, and melphalan.®® Some of
these signatures are particularly pronounced in post-
treatment tumors with underlying mismatch repair
(MMR) deficiency. Therefore, treatment of MMR-
deficient patients may actually induce mutations that
drive relapse or resistance to the treatment itself. For
instance, acute lymphoid leukemia (ALL) patients
treated with thiopurine chemotherapy were shown
to acquire known relapse-associated mutations in the
genes NR3C1, TP53, and NT5C2.G9

MMR-deficiency signatures are among the many
that arise endogenously, whether from specific gene
mutations or by other means. Endogenously-derived
signature etiologies include 5-methylcytosine deaminase
and apolipoprotein B editing complex (APOBEC)
activity, polymerase eta errors, base excision repair
deficiency, reactive oxygen species (ROS) damage, and
homologous recombination (HR) deficiency, among

others. Clustering based on some of these mutational
signatures in multiple myeloma yielded groups with
prognostic value.®” Therefore, specific compositions
of mutational signatures have the potential to inform
clinical treatment and surveillance decisions.

It should also be noted that the presence of certain
mutational signatures may indicate greater sensitivity to
specific cancer therapeutics. The most well-established
example is that the presence of HR-deficiency signatures
is closely associated with sensitivity to both platinum-
based chemotherapy and poly(ADP)-ribose polymerase
(PARP) inhibitors in breast cancer. Other examples
with potential clinical applications include APOBEC
signatures and their association with sensitivity to
ataxia telangiectasia and Rad3-related kinase (ATR)
inhibition,®® ROS damage signatures associated with
MYCN amplification® and potentially with sensitivity
to electron transport chain complex I inhibitors.“” The
potential link between ROS damage and therapeutic
sensitivity may be particularly relevant in acute myeloid
leukemia (AML), as McLeod et al. found a ROS
damage mutational signature in a substantial proportion
of pediatric and adult AML samples.“V)

ANALYTIC APPROACHES FOR MUTATIONAL
SIGNATURE INFERENCE IN HEMATOLOGICAL
MALIGNANCIES

The vast majority of work in cancer mutational signature
analysis have been conducted in solid tumors.®#4)
Indeed, there are inherent challenges in the accurate
calling of mutational signatures in hematological
cancers. One issue is that the mutation rate tends to be
much lower than that in solid tumors (Figure 1). This is
particularly true of myeloid malignancies. For example,
AML typically has some 100-fold fewer mutations
than lung cancer and melanoma. Even calling somatic
mutations is more difficult in blood cancers than in
solid tumors.*? To distinguish between somatic and
germline variants in tumor DNA, researchers often rely
on matched normal DNA from the same patient. Blood
is a convenient source of normal DNA in patients
with solid malignancies; however, it is unsuitable for
hematological malignancies. Buccal swabs, fingernails,
hair, saliva, and skin can serve as alternative sources
of normal DNA. However, all of these sources have
drawbacks, such as inadequate amounts of DNA
or contamination with malignant blood cells. Some
researchers culture skin fibroblasts; however, this is not
a scalable solution.*®
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Figure 1. Somatic mutation rates tend to be lower in hematological malignancies. (A) Total numbers of mutations for each tumor in the Pan-Cancer Analysis of Whole
Genomes, grouped by tissue type. Hematological tumors are indicated with red arrow. (B) Same as panel (A), but here, tumors are grouped by specific cancer type. Red
arrows indicate hematological cancers. Note that all hematological cancers are among the less frequently mutated types, save B-cell non-Hodgkin lymphoma (BNHL)

Another challenge is that de novo signature
extraction requires a large patient cohort.
Hematological cancers are generally much rarer than
many solid tumor types, which limits the number
of available whole-genome sequences. In existing
literature, the dominant signatures in blood cancers are
“clock-like” signatures that are closely linked to aging.®?
As a result, lower-abundance signatures can be difficult
to detect accurately.

Despite these challenges, several groups have
developed strategies to identify mutational signatures
in hematological malignancies using standard tools.
Researchers at the Memorial Sloan Kettering Cancer
Center developed a platform, termed MSK-IMPACT
Heme“? which sequences 400 targeted genes that are
known to play roles in hematological cancers. The use
of a targeted panel greatly reduces costs compared to
whole-genome sequencing and makes the sequencing
of matched normal DNA economically feasible. In their
study, the authors used either nail clippings or saliva as
germline DNA sources. Owing to the limited number of
mutations that can be detected by targeted sequencing,
SigProfiler was applied to only the 11% of tumors with
the highest mutational burden, all but two of which
were lymphoid malignancies. In addition to age-related
signatures, a variety of other signatures were detected,
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largely corresponding to the type of treatment that the
patient received prior to sequencing.

Diamond et al.®» obtained similar results using
whole-genome and whole-exome sequencing of myeloid
malignancies, also applying SigProfiler. They exclusively
found age-related signatures in treatment-naive AML
and patients undergoing radiation, but found treatment-
related signatures in patients undergoing either high-
dose melphalan- or platinum-containing therapies.
In both cases, the study used standard methods to
infer mutational signatures without tailoring them to
hematological malignancies.

Hoang et al.?” used the Palimpsest method,*”
primarily developed for solid tumors, to infer
mutational signatures from whole-genome and whole-
exome sequencing of multiple myeloma samples. The
authors identified multiple “flat” signatures, including
one associated with homologous recombination repair
deficiency, which was subsequently criticized as being a
false positive finding.*® As mentioned previously, flat
signatures are difficult to distinguish from one another.

In response to some of these challenges, Rustad
et al.?» developed a method called mmsig, which was
specifically designed for hematological malignancies.
The authors demonstrated its efficacy on 82 multiple
myeloid samples from the CoMMpass project,*”
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142 chronic lymphocytic leukemia (CLL) patients
from the CLL Genome Project,*” and AML patients
from TCGA.®? The approach uses a dynamic error-
suppression procedure rather than relying on a hard
percentage cutoff for signature contributions. They were
able to show the ability to accurately infer mutational
signatures, even from low numbers of mutations.

MUTATIONAL SIGNATURES IN HEMATOLOGICAL
MALIGNANCY AND THEIR PRECURSORS: A SURVEY
OF DISCOVERIES THUS FAR

All hematological malignancies arise in cells with
normal blood cell progenitors. Deep sequencing of
hematopoietic stem cells (HSCs) has revealed distinct
mutational signatures, even at very early stages of life,
including in cord blood.®® Some mature malignancies
pass through precursor stages during which cells
acquire additional mutations that confer a proliferative
advantage.

Inthemyeloidrealm,onestepwise pathisfromnormal
HSCsto clonal hematopoiesis of indeterminate potential
(CHIP) to clonal cytopenia of unknown significance
(CCUS) to myelodysplastic syndrome (MDS) to AML.
Along this continuum, mutational signatures have only
been characterized in normal HSCs, CHIP, and AML.
In individuals without mutagenic exposures such as
smoking and chemotherapy, mutational signatures in
all these entities tend to be dominated by the clock-
like signatures SBS1 and SBSS5. (Note that here we
use the nomenclature adopted from the COSMIC
database https://cancer.sanger.ac.uk/signatures/). SBS1
is caused by spontaneous deamination of methylated
cytosines into thymines and is very closely tied to the
cell cycle. The cause of the SBSS signature is unknown,
although it is strongly correlated with age. SBS32 has
also been reported to be common in normal HSCs and
AML.®» However, its association with azathioprine
treatment®® raises questions regarding its validity. The
observation of a dominant and consistent mutational
pattern in normal HSCs led some researchers to
define the overall pattern as its own signature, termed
SBS-HSC.C% Studies querying mutational signatures
in CHIP have, unsurprisingly, revealed SBS-HSC or its
components as dominant for the majority of individuals.®>>%
As compared to healthy individuals without CHIP,
mutational patterns were found to be enriched in SBS4
and SBS6.67 SBS4 is associated with tobacco smoking,
which is also linked to CHIP.®® On the other hand, SBS6
is associated with defective DNA mismatch repair,
raising the possibility that this deficiency is partially
responsible for CHIP mutations in some individuals.

Although they also harbor pronounced clock-like
mutational signatures, many lymphoid malignancies
have signatures that are not typically found in myeloid
malignancies. These include those attributed to
APOBEC, activation-induced cytidine deaminase
activity, DNA polymerase eta, UV light exposure, and
MMR deficiency.*”

Recently, Alberge et al.*? characterized mutational
signatures in a cohort of patients with multiple myeloma
(n = 812) and its precursors: Monoclonal Gammopathy
of Undetermined Significance (MGUS; n = 37) and
smoldering multiple myeloma (n = 120). They found
21 different signatures across the cohort, of which eight
were novel. Observed signatures with known etiologies
included those associated with somatic hypermutation,
activation-induced cytidine deaminase (SHM/AID),
APOBEC, and ROS, along with the expected clock-
like signatures. Clonal hierarchy analysis allowed
the authors to determine the temporal order of the
different classes of signatures. They concluded that early
mutations were largely driven by clock-like signatures
and an AID signature before the onset of MGUS
and smoldering multiple myeloma. APOBEC-driven
mutational processes take hold after the initiation of
these precursor conditions and then gradually develop
into multiple myeloma.

Similar to solid tumors, patients with hematological
malignancies who have undergone treatment typically
carry signatures of the therapy. Indeed, analysis
reveals signatures specifically attributed to thiopurine
chemotherapy,®®  platinum  chemotherapy,>+760
melphalan,® and/or radiation treatment®) that the
patient had undergone.

Table 2 catalogs the mutational signatures that have
been reported to date in hematological malignancies.

CONCLUSION AND FUTURE WORK

Despite the significant progress made in the study of
mutational signatures over the past decade, substantial
room remains for further discovery and refinement.
One of the main challenges is the variability in the
outputs generated by different signature extraction
tools, which makes it difficult to determine the most
accurate or biologically meaningful results. Currently,
most reference signature sets are designed to represent
mutational processes across the entire human body.
However, it is well established that mutational processes
vary significantly across tissues. The development of
tissue-specific reference signatures could help address
issues such as signature bleeding and improve the
biological relevance of signature assignments.
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Table 2. Description of the mutational signatures most commonly found in
hematologic malignancies

Table 3. Exemplary publicly-available data sources for mutational signature
inference

Mutational process SBS signatures Malignancy type

Aging (clock-like signatures) SBS1and b Ubiquitous signatures
Activity of APOBEC cytidine SBS2and 13 MM, MGUS, SMM,
deaminase DLBCL, FL, B-ALL
Defective homologous DNA repair SBS3 MM
Defective DNA base excision repair SBS30 MM
AID SBS84 and 85 MM, MGUS, SMM,
DLBCL, FL, B-ALL, CLL
Ultraviolet light exposure SBS7 DLBCL and mature T
and NK neoplasms
Polymerase eta somatic SBS9 MM, MGUS, SMM,
hypermutation DLBCL
Defective DNA MMR SBS6, 15,20,21,26 MM, DLBCL, FL, BLL,
and 44 mature T and NK
neoplasms
ROS SBS18 MM, MGUS, SMM,
B-ALL, TALL and AML
Unknown chemotherapy exposure SBS86 ALL and B-ALL
Thiopurine chemotherapy exposure SBS87 ALL and B-ALL
Platinum  based  chemotherapy SBS31 and 35 AML and MM
exposure
Melphalan exposure SBS-MM1 (or 99) AML
Unknown aetiology SBS8, 16.and 17 MM, MGUS, SMM

AID: activation-induced cytidine deaminase; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; B-ALL:
B cell ALL; CLL: chronic lymphocitic leukemia; DLBCL: diffuse large B cell lymphoma; FL: follicular lymphoma; MGUS
monoclonal gamopathy of undetermined significance; MM: multiple myeloma; MMR: mismatch repair; NK: natural killer;
SBS: single base substitution; SMM: smoldering multiple myeloma.

In addition to improving the reference sets, it would
be valuable to establish guidelines for tool selection
based on cancer type or tissue context, as different
tools show varying levels of accuracy depending on
the setting. Similarly, a better understanding of the
minimum number of mutations required to reliably
extract each signature is required. Some signatures,
particularly the flatter ones, are inherently more
difficult to detect, and applying signature analysis to
low-mutation samples without this knowledge may
lead to misleading conclusions.

Another promising avenue for future research is the
application of mutational signatures to noncancerous
tissues. As this methodology expands beyond oncology,
it opens up a broad range of opportunities for exploring
mutational processes in other biological contexts such
as aging, inflammation, and disease precursor states.

Specifically within hematologic malignancies,
research on mutational signatures remains relatively
underdeveloped, particularly for myeloid neoplasms.
Given the rapid evolution of tools and the increasing
availability of large-scale public datasets, there is
an opportunity to close this gap, even in the face of
relatively low mutation rates. Table 3 provides a sample
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. Number of
Data source Data types Disease subtype(s) patients
TARGET WES, WGS ALL 1006
TARGET WES, WGS AML 249
TCGA WES, WGS AML 200
TCGA WES, WGS Diffuse Large B-cell 58
Lymphoma
BeatAML WES AML 534
MMRF-CoMMpass WES, WGS Multiple Myeloma 975
MP2PRT WES, WGS ALL 1507
CGCl WGS Burkitt Lymphoma 252
CGCl WGS Diffuse Large B-cell 66
Lymphoma
The CLL Genome WES, WGS Chronic Lymphocytic 284
Project Leukemia
MDS  Sequencing WES Myelodysplastic Syndrome 42
Project
All of Us WGS AML, MDS 1020
OHSU WES Chronic Myeloproliferative 158
Disorders

ALL: acute lymphocytic leukemia; AML: acute myeloid leukemia; CGCI: the Cancer Genome Characterization Initiative;
CLL: chromic lymphocytic leukemia; MDS: myelodysplastic syndrome; MMRF-CoMMpass: Multiple Myeloma Research
Foundation-Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile; MP2PRT: Mo-
lecular Profiling to Predict Response to Treatment; OHSU: Oregon Health Sciences University; TARGET: Therapeutically
Applicable Research to Generate Effective Treatments; TCGA: the Cancer Genome Atlas; WES: whole-exome sequencing;
WGS: whole-genome sequencing.

of publicly-available whole-exome and whole-genome
data sets from hematological malignancies. Most of
these data sets have not been mined for mutational
signatures. Applying mutational signature analysis
to these diseases may also shed light on pre-leukemic
conditionssuch as clonal hematopoiesis of indeterminate
potential and clonal cytopenia of unknown significance,
which are well studied in the literature but are not yet
fully understood from a mutational process standpoint.
Indeed, viewing mature hematological malignancy as
the terminus of a continuous evolution from normal
hematopoietic stem cells to precursor conditions to
frank malignancy, examination of mutational signatures
at each of these stages may provide clues as to which
signatures are associated with progression. Thus,
accurate characterization of mutational signatures in
the early stages of leukemia development may aid in
clinical diagnosis, prognosis, and treatment decisions.
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