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ABSTRACT

Atherosclerosis remains the leading cause of mortality worldwide. The characterization of atherosclerotic
lesions reveals that they represent a chronic and progressive inflammatory condition affecting the
arterial wall. Despite extensive investigations, its complex pathogenesis remains incompletely
understood. Single-cell RNA sequencing (scRNA-seq) has recently emerged as a transformative
tool, enabling detailed analysis of the cellular composition within atherosclerotic plaques. This
approach provides a more comprehensive and nuanced understanding of plaque biology. This
review provides a concise overview of current scRNA-seq methodologies and highlights their
applications in atherosclerosis studies to elucidate the mechanisms underlying its onset, progression,
and potential therapeutic targets.
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INTRODUCTION

Atherosclerosis is the fundamental pathological process underlying various
vascular diseases, including coronary heart disease, many ischemic strokes,
and peripheral artery disease, which collectively affect multiple organs such as
the heart, brain, and limbs. Ischemic heart disease and stroke are the leading
causes of mortality globally.() Given its widespread impact, understanding the
pathogenesis of atherosclerosis is crucial.®

Extensive studies have elucidated key mechanisms driving atherosclerosis.
Endothelial dysfunction, induced by altered hemodynamic forces and reduced
nitric oxide bioavailability, is a critical initiating event.®) Dysfunctional endothelial
cells (ECs) enable the pathological entry of circulating low-density lipoprotein
(LDL) particles into the intima®® and recruitment of leukocytes, triggering a
localized inflammatory response that drives disease progression.®

Monocytes infiltrate the intima and differentiate into macrophages, which
are crucial in atherosclerosis progression.” These macrophages can internalize
oxidized LDL, causing foam cell formation owing to cholesterol accumulation.®
Similarly, vascular smooth muscle cells (VSMCs) can transition into foam
cells under specific stimuli, further contributing to plaque formation.®” Certain
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subtypes of mononuclear phagocytes secrete pro-
inflammatory cytokines, promote cell migration and
proliferation, and recruit additional myeloid cells,
exacerbating inflammation.'” In addition, other immune
cells, including platelets, neutrophils, T cells, and B cells,
contribute to the inflammatory microenvironment.®

As the disease progresses, macrophage apoptosis
(programmed cell death) and defective efferocytosis
(impaired dead cell clearance) drive the formation
of necrotic cores within plaques. The plaque core is
encapsulated by a fibrous cap comprising extracellular
matrix (ECM) macromolecules, including interstitial
collagens, which are produced by VSMCs that have
migrated toward the luminal surface.'V Plaque expansion
can narrow the vascular lumen, causing downstream
ischemia. However, during the early phase of
atherogenesis, plaques grow outward (compensatory
enlargement), which permits significant accumulation
of plaque within the intima without luminal
encroachment. Plaques with weakened fibrous caps
are prone to rupture, triggering atherothrombosis and
acute ischemic events.(?

Furthermore, platelets play a critical role in
monocyte recruitment to atherosclerotic plaques and
in regulating macrophage and smooth muscle cell
phenotypes.!® Upon infiltrating the plaque, monocytes
differentiate and proliferate into distinct macrophage
subtypes. Notably, Ly6C"&" monocytes predominantly
differentiate into M1 macrophages, whereas the prospect
of Ly6C" monocytes remains unclear.! Macrophages
drive chronic vascular inflammation by releasing pro-
inflammatory cytokines (interleukin (IL)-1, IL-6, and
tumor necrosis factor), similar to the M1 phenotype;
whereas anti-inflammatory macrophages secrete IL-10
and transforming growth factor-beta, similar to the M2
phenotype.(®

Foam cells, an early atherosclerosis marker,
are characterized by lipid phagocytosis and metabolic
functions. However, their death releases lipids and
tissue factors, contributing to the formation of the
necrotic core, a crucial component of unstable plaques that
promotes rupture and thrombosis, causing myocardial
infarction.!® Additionally, macrophages degrade the
ECM via matrix metalloproteinases (MMPs), weakening
the vessel wall and contributing to adverse remodeling.(”)

Beyond M1/M2 macrophages, atherosclerotic plaques
harbor novel subtypes, including Mox, M4, Mhem,
and M(Hb). Mox macrophages, derived from the bone
marrow, exhibit reduced M1/M2 gene expression,
enabling heme detoxification, oxidative stress reduction,
and foam cell inhibition. Conversely, M4 macrophages,
abundant in unstable plaques, express chemokines
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(CCL2 and CXCLA4) and proteases (MMP-12) that
facilitate monocyte and neutrophil recruitment, causing
ECM degradation. At hemorrhagic sites, M(Hb) and
Mhem macrophages regulate erythrocyte turnover. Mhem
macrophages, characterized by high CD163 and HO-1
expression, recycle iron and heme, whereas M(Hb)
macrophages expressing CD206 and CD163 scavenge
free hemoglobin, mitigating oxidative damage.'®

These findings offer valuable insights into the
complex regulatory mechanisms of macrophages in
the progression and regression of atherosclerosis and
plaque rupture (Figure 1).1920

Despite substantial enhancement, the pathogenesis
of atherosclerosis remains incompletely understood
owing to its complexity, which involves diverse cell
types and intricate molecular interactions. Single-
cell RNA sequencing (scRNA-seq) overcomes these
limitations by providing unprecedented resolution
of cellular composition and gene expression profiles.
In contrast to bulk RNA sequencing, which involves
averaging RNA expression across all cells in a sample,
scRNA-seq captures RNA expression at the single-cell
level, enabling the identification of cell-type-specific
expression patterns and revealing cellular heterogeneity
within tissues.V

scRNA-seq has provided novel insights into the
pathogenesis of atherosclerosis, offering valuable
opportunities for therapeutic innovation. This review
highlights these advancements and explores their
potential impact on understanding and managing
atherosclerosis (Figure 2).%22

Investigating cellular heterogeneity in
atherosclerosis
Understanding the cellular diversity within atherosclerotic
plaques has been hindered by the inherent heterogeneity
of the tissue. Histological studies have shown that
plaques predominantly comprise VSMCs and infiltrating
immune cells. Although advances in omics techniques,
such as DNA microarrays and bulk RNA sequencing,
have provided valuable insights into the proteomic and
transcriptomic profiles of plaque cells, these bulk methods
aggregate data from entire cell populations, obscuring the
distinct contributions of individual cell types.+>)
scRNA-seq overcomes this limitation by enabling the
identification of known and novel cell populations and
revealing subtle transcriptomic variations influenced
by specific microenvironments. This breakthrough has
driven the development of advanced bioinformatics
tools, facilitating in-depth analyses such as trajectory
mapping, RNA velocity, and cell-cell communication
studies.®®
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Figure 1. Distinct regulatory mechanisms of macrophage phenotypes in atherosclerosis

Plague progression: Foam cells contribute to plaque progression by binding and internalizing circulating lipids. However, they also facilitate cholesterol efflux,
counteracting plaque development. M1 macrophages promote foam cell formation primarily through the secretion of pro-inflammatory cytokines (e.g., tumor necrosis
factor (TNF), interleukin (IL)-6, and IL-1), whereas M2 macrophages secrete anti-inflammatory cytokines (e.g., IL-10 and transforming growth factor-beta [TGF-f]),
which inhibit inflammation, reduce foam cell formation, and enhance cholesterol efflux. Additionally, M(Hb) and Mhem macrophages mediate cholesterol efflux.
Plaque rupture: Macrophage-derived matrix metalloproteinases (MMPs) degrade extracellular matrix (ECM) proteins such as collagen and elastin, weakening the
fibrous cap and increasing the risk of plaque rupture. M2 macrophages mitigate this process by inhibiting MMP production through IL-10 secretion. PPARc agonists
reportedly suppress IL-1B-induced MIMP-12 expression, offering potential therapeutic benefits. Plague regression: During plaque regression, Wnt signaling is activated
in macrophages to facilitate migration. Statins and LRP-1 deficiency promote regression by activating CCR7-dependent macrophage migration. M2 macrophages are
crucial drivers of plaque regression, with Tregs and HDL promoting M2 polarization (18). Dark blue arrows denote activation, and red arrows indicate inhibition

Exploring
atherosclerosis Translational research
through single-cell

—_———
RNA sequencing o
i < piellular profile / v s 2 4
e X PPO6

q GWAS-associated markers
©eO® T T

Causal Proxy

® Cell lineage
analysis

S
o

AN 3

[

\‘ Intercellular

@@ slgnaling Spatial gene

S expression profiling

Cellular adaptability

Symptons and

signals

Source: Created with BioRender. Available from: https:/www.biorender.com/

Figure 2. Exploring atherosclerosis through single-cell RNA sequencing

Single-cell RNA sequencing offers a powerful toolkit for exploring various aspects of atherosclerotic disease. scRNA-seq provides valuable insights into lineage tracing,
cellular plasticity, and clonal expansion by revealing the cellular composition of atherosclerotic plaques. Additionally, it enables the identification of

cell-gene associations derived from markers associated with the genome-wide association study, which are crucial for identifying genetic variants that are vital for
understanding disease mechanisms, targeting therapies and precision medicine®
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Future directions include the integration of spatial
transcriptomics to provide spatial context to single-cell
data, combining genetic and transcriptomic analyses for a
comprehensive understanding of atherosclerotic plaque
biology, and translating findings from animal models to
human studies to enhance clinical relevance.”

Advancing the understanding of cellular composition:
Insights from scRNA-seq

scRNA-seq has enhanced the understanding of
atherosclerotic plaques by providing detailed insights
into cellular heterogeneity. This technique has revealed
diverse subpopulations of VSMCs, ECs, and immune
cells, each exhibiting distinct phenotypes and functional
roles. These cellular states critically determine plaque
stability and clinical outcomes.®®

Vascular smooth muscle cells play a pivotal role in
maintaining structural integrity and regulating blood
flow. In atherosclerosis, smooth muscle cells (SMCs)
undergo phenotypic modulation, adopting states that
influence plaque stability.® Human plaques harbor
contractile and synthetic SMC phenotypes, with the
latter contributing to fibrous cap formation. Emerging
evidence suggests the existence of intermediate
phenotypes, such as fibrochondrocytes. Similarly,
scRNA-seq has revealed the role of TCF21 in mediating
SMC transitions, underscoring its significance in fibrous
cap stabilization.C?

Endothelial cells form the critical interface between
the bloodstream and arterial wall. Additionally, scRNA-
seq studies have revealed that EC subsets participate
in processes such as angiogenesis and endothelial-
to-mesenchymal transition (EndoMT).#2 Notably,
EndoMT alters SMC composition and contributes
to plaque destabilization, although its precise role in
disease progression remains under investigation.®?

Immune cell accumulation is a hallmark of
atherosclerosis.®Y scRNA-seq has delineated macrophage
subpopulations, including resident-like, inflammatory,
interferon-inducible, and cavity macrophages.®> Data
from scRNA-seq have superseded those of the initial
oversimplified M1/M2 dichotomy.®® Similarly, T cells
exhibit significant heterogeneity, with mixed Thl and
Treg transcriptional profiles that reflect the complexity
of immune regulation in atherosclerosis.*”

Hemodynamics and transcriptomic insights

via scRNA-seq

Hemodynamics plays a crucial role in the development
of atherosclerosis, with lesions predominantly forming
in regions of disturbed blood flow, such as arterial
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branches and curvatures.®® The impact of disturbed
flow on arterial cell behavior is well-documented, and it
promotes atherosclerosis by modulating gene expression
in ECs. Insights from scRNA-seq strongly indicate that
disturbed flow reprograms ECs, shifting their phenotype
from atheroprotective to proatherogenic.®”

Regional variability in atherosclerotic lesions
Atherosclerotic plaques develop across various arterial
regions, including the coronary, carotid, cerebral,
aortic, iliac, and femoral arteries. Among these, the
coronary and carotid arteries are the most frequently
investigated in human studies.“” Lesion location critically
determines plaque morphology and function, influencing
the clinical presentation and outcomes of ischemic
events.“) For example, coronary artery plaques result
in local thrombosis owing to rupture or erosion, causing
downstream tissue ischemia. In contrast, plaques in the
carotid circulation frequently cause ischemic damage
through embolization,*? obstructing cerebral arteries.
Understanding these site-specific pathophysiological
mechanisms is crucial for developing targeted diagnostic
and therapeutic strategies.

Role of single-cell RNA sequencing in

precision medicine for atherosclerosis

Studies on the human genome and disease mechanisms
have traditionally focused on the tissue level. However,
the advent of scRNA-seq, with its ability to provide high-
resolution insights at the cellular level, has significantly
advanced the field of precision medicine. Regarding
atherosclerosis, scRNA-seq has revealed potential
therapeutic targets and facilitated drug discovery, fostering
tailored clinical interventions (Figure 3).(*34)

Early diagnosis of atherosclerosis:

Advances and challenges

The early clinical manifestations of atherosclerosis are
usually subtle and easily overlooked, as the disease can
progress asymptomatically for years before causing
overt symptoms.*> Early and accurate diagnosis is
critical for reducing complications and mortality, as it
plays a pivotal role in minimizing cardio-cerebrovascular
events. Current diagnostic approaches include blood
biochemical tests (to identify risk factors) and imaging
techniques such as ultrasonography, coronary artery
calcium scanning, computed tomography, and invasive
coronary angiography (to assess disease scope and
severity). However, these diagnostic modalities usually
impose a significant economic burden.“®
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Figure 3. Integrative framework of single-cell analysis in precision medicine for atherosclerosis

The integration of single-cell analysis and artificial intelligence facilitates a comprehensive examination of tissue heterogeneity within atherosclerotic plaques and

in the bloodstream. This multidisciplinary approach enhances the understanding of the pathophysiological mechanisms underlying atherosclerosis and supports the
advancement of early diagnostic and targeted therapeutic strategies. Therefore, this strategy was designed to refine patient-specific treatment, which is consistent with

the objectives of precision medicine in the effective management of atherosclerosis!'®

Early and accurate atherosclerosis diagnosis is
crucial for reducing complications and mortality. High-
resolution imaging techniques, including photon-
counting computed tomography angiography, combined
with molecular-level analysis, are promising for
improving early diagnosis and preventing cardiovascular
events.“? Ultra-high resolution computed tomography
provides a detailed assessment of coronary vessels,
including the coronary artery lumen, vascular walls, and
atherosclerotic plaques, with superior spatial resolution,
an essential feature for early atherosclerosis detection.*®
Additionally, this imaging modality can provide
information regarding local inflammation through the
analysis of pericoronary fat tissue (the Fat Attenuation
Index), validated to predict outcomes.*”

Conversely, single-cell analysis may represent a
minimally invasive approach for early atherosclerosis
diagnosis.®” Single-cell transcriptomics involves examining
the gene expression level of individual cells in a given

population by simultaneously measuring the RNA
concentration of hundreds to thousands of genes.
Whole-blood gene expression profiling provides
valuable insights into atherosclerosis dynamics,
potentially revealing pathogenic mechanisms. Several
prevalent conditions, including acute MI®Y and
different forms of atherosclerosis®® exhibit distinct
gene expression signatures. Analyzing differential gene
expressions in peripheral blood cells offers a more
comprehensive understanding of disease progression,
enhancing the prediction of cardiovascular events
beyond conventional diagnostic methods.® Notably,
alterations in gene expression within peripheral blood
cells demonstrate high sensitivity and specificity for
diagnosing atherosclerotic coronary artery disease.¥
For instance, the ADIR2 gene expression levels have
been associated with the progression of coronary
atherosclerosis.® Additionally, Meng et al. identified
ABCBI1, ACSL1, ZHHCY9, and other genes as
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crucial contributors to atherosclerosis pathogenesis.®®
Furthermore, a recent study has revealed that SVEP1
can drive atherosclerosis independently of cholesterol
levels.” Consequently, single-cell analysis is becoming
increasingly attractive for the precise and early diagnosis
of atherosclerosis.“*)

Advancements in early atherosclerosis treatment
Effective management of atherosclerosis requires an
in-depth understanding of various treatment modalities
and their therapeutic outcomes. Clinicians should be
well-versed in treatment nuances to make informed
decisions. Single-cell analysis may be a valuable tool in
this endeavor, offering detailed insights into the efficacy
of treatment strategies at the cellular level, which is
crucial for optimizing early intervention.®®

Single-cell analysis allows for a detailed evaluation
of therapeutic impacts by monitoring changes in
cellular composition and gene expression before and
after treatment within the same individual or across
different groups.®® For instance, the effectiveness of
desmosterol, an immunomodulator targeting lipid
dysregulation in atherosclerosis, has been demonstrated
through blood single-cell analysis. This method
revealed significant changes in the expression of anti-
inflammatory macrophage markers post-treatment,
affirming its role in mitigating inflammation by
modulating macrophage cholesterol metabolism and
their activation state.” Additionally, RNA-seq analyses
of macrophage phenotypes and inflammation-related
genes in experimental atherosclerosis have revealed
the pharmacokinetic benefits of genistein, enhancing
its profile as a treatment option.®Y These findings
underscore the utility of single-cell technologies in
providing a nuanced assessment of treatment efficacy
at the molecular level.

Current challenges and emerging opportunities in
scRNA-seq for atherosclerotic studies

scRNA-seq is promising for elucidating the cellular
and molecular mechanisms underlying atherosclerosis,
revealing potential pathways for innovative diagnostic
and therapeutic strategies. However, the approach is
limited by several challenges that should be overcome
to fully harness its potential.

Key challenges
Sample preparation and quality: The calcified and
fibrotic nature of atherosclerotic plaques presents
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significant challenges for cell dissociation. Enzymatic
digestion processes risk selectively losing or damaging
specific cell populations, and the limited availability of
fresh human tissue restricts the generalizability of the
findings.®?

Cell population representation: Technical limitations
in capturing low-abundance populations can cause
underrepresentation of rare cell types, such as immune
cell subsets or progenitor cells. Dropout effects and
batch variability further hinder the accurate detection
of gene expression in small cell subsets.®®

Data analysis complexities: The cellular heterogeneity
and dynamic states within atherosclerotic plaques
complicate clustering and trajectory analysis. Integrating
scRNA-seq data with other multi-omics approaches,
such as proteomics or spatial transcriptomics, requires
sophisticated computational pipelines. Additionally,
interpreting non-coding RNA functions and alternative
splicing events remains challenging.?V

Reproducibility and standardization: Variability
in scRNA-seq protocols and platforms contributes to
inconsistencies across studies. The lack of standardized
reference datasets for atherosclerosis hinders cross-
study comparisons and limits meta-analysis potential.(*)

Translational challenges: Species-specific differences
in atherosclerotic plaque composition and progression
complicate the translation of findings from animal
models to humans. Moreover, in vivo functional validation
of identified pathways and cell types is resource-
intensive and time-consuming.®

Opportunities for advancement
Integration with spatial technologies: Combining scRNA-
seq with spatial transcriptomics can provide a spatially
resolved view of cellular heterogeneity in proliferative
atherosclerosis, revealing cell-cell interactions and
microenvironmental dynamics.©®®

Advances in multi-omics approaches: Incorporating
epigenomics, proteomics, and metabolomics will
facilitate a more comprehensive understanding of
cellular functions. Single-cell multi-omics platforms,
such as CITE-seq and scATAC-seq, can reveal gene
regulatory networks and lineage trajectories."

Enhanced computational tools: Developing robust
algorithms to analyze complex datasets, address batch
effects, and enable longitudinal data integration will
improve data reliability. Machine learning approaches
can enhance the discovery of novel cell types and the
development of predictive models for atherosclerosis
progression.®”
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Improved sample accessibility: Innovations in
biobanking and single-cell cryopreservation will increase
the availability of high-quality human samples. Advanced
protocols capable of preserving rare cell types and
capturing calcified tissue components will improve cell
representation in studies.®®

Focus on clinical translation: Integrating scRNA-
seq findings with imaging and clinical data can reveal
biomarkers of atherosclerotic plaque stability and
disease progression. Targeting crucial cell types or
pathways revealed through scRNA-seq can inform the
development of precision therapies.®”

Longitudinal and functional studies: Longitudinal
scRNA-seq studies can be used to track cellular dynamics
during atherosclerosis progression and regression in
response to treatment. Functional studies validating the
roles of specific cell types and pathways will facilitate the
translation of discoveries into therapeutic applications.

Cross-species comparisons: Identifying conserved
cellular and molecular signatures between human and
animal models will enhance the translational relevance of
preclinical studies regarding coronary artery disease.’"

CONCLUSION

scRNA-seq highlights the intricate complexity of
atherosclerotic plaques, significantly advancing the
understanding of their biology and enabling the
identification of novel therapeutictargets. The continued
integration of single-cell technologies with advanced
computational approaches will further elucidate the
molecular mechanisms underlying atherosclerosis,
contributing to improved clinical outcomes for patients
with cardiovascular diseases.
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