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Dear Editor, 
The Brazilian Society of Medical Genetics and Genomics recently issued a 
statement against using polygenic risk scores for breast cancer risk stratification 
in Brazilian women.(1) In fact, an ongoing surge could be observed in genomic 
signatures and prognostic models, with over 200 LASSO-based TCGA signatures 
appearing in Scientific Reports last year, based on a focused keyword-based 
search, several of questionable quality. Discerning reliable models from 
unreliable ones is crucial for clinicians in order to avoid poorly validated tools.

The first step is to assess how the model was built and whether it was 
properly validated. Currently, we distinguish two common validation types. 
The first involves splitting the patient dataset into proportions such as 80/20 
or 70/30 for model training and testing. Unfortunately, this approach is less 
effective, as machine learning after a single random training-test split might 
yield unreliable results.(2) The second and more robust method involves 
validation using an entirely external dataset from independent studies. 
This approach is more reliable, as internal data splitting often fails to truly 
validate a model and cannot replace independent replication across different 
researchers, populations, and methodologies.(3)

The next step is the assessment of the area under the receiving operating 
curve (AUC), representing the integral of all points along the curve and 
capturing both sensitivity and specificity to provide a comprehensive measure 
of the overall performance of the model. In general, a model with an AUC <0.6 
could be considered unreliable and acceptable models should display an AUC of at 
least 0.7.(4) Subsequently, evaluating the biological plausibility of the genes included 
in the model is essential. For instance, models in which a tumor suppressor 
expression predicts worse survival or an oncogene expression predicts better 
prognosis, could lack reproducibility. Models and signatures should (or should 
aim to) retain biological relevance and plausibility. Therefore, assessing whether 
the applied genes have been validated in the disease through methods beyond 
transcriptomics (e.g., real-time PCR or immunohistochemistry) is also necessary.

Finally, most models and signatures are developed using publicly available 
datasets, such as those from TCGA or the Gene Expression Omnibus, and are 
typically produced and evaluated retrospectively. To ensure reproducibility 
and enable the integration of these models into clinical practice, model 
validation in prospective studies would be essential. This step is crucial, as 
prospective validation provides an important first assessment of the real-
world machine learning model performances.(5)

These steps could potentially prove particularly valuable for clinicians, helping 
them avoid poorly designed studies, as this emerging field is underrepresented 
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in the undergraduate curricula and its literature could  
be hard to navigate. Figure 1 presents a flowchart, 
summarizing the algorithm for identifying robust models.

Figure 1. Algorithm for identifying robust models
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