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	❚ In Brief
We evaluated the performance of TargetScan, miRDB, and 
miRWalk for predicting miRNA-mRNA interactions in HNSCC. 
Based on clinical tumor and cancer-free tissue data, miRWalk 
emerged as the most comprehensive tool. Validation using 
NanoString technology and MiRTarBase confirmed key predictions, 
highlighting the important roles of the PI3K-Akt and Wnt 
pathways. This study underscores the importance of integrating 
bioinformatics and experimental data to better understand HNSCC. 
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	❚ Highlights
	■ miRWalk had the highest predicted interactions and 
validated miRNA networks in HNSCC.

	■ Around 3.3% of interactions overlapped across tools, 
emphasizing the need for multitool approaches.

	■ Dysregulated genes and miRNAs were tied to cancer-
driving PI3K-Akt and Wnt pathways.

	■ The validated approach highlights the importance of 
integrating computational and molecular data.
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	❚ ABSTRACT
Objective: Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis largely due 
to late diagnosis and a lack of reliable biomarkers. MicroRNAs (miRNAs), small non-coding 
RNAs that regulate gene expression, are promising biomarkers for HNSCC. This study evaluated 
miRNA-mRNA interactions in HNSCC using conventional computational tools and validated the 
results using molecular data. Methods: We compared three miRNA-mRNA interaction prediction 
tools, TargetScan, miRDB, and miRWalk, using differentially expressed miRNAs and mRNAs 
from HNSCC and cancer-free tissues. NanoString nCounter was used to measure miRNA and 
mRNA expression and the miRTarBase database was used to validate the predicted miRNA-mRNA 
interactions. Results: TargetScan and miRWalk provide a comprehensive overview of potential 
interactions, whereas miRDB provides functional insights. Our results identified 77 and 154 
differentially expressed miRNAs and mRNAs in HNSCC, respectively. miRWalk predicted the 
highest number of miRNA-mRNA interactions, followed by miRDB and TargetScan. Only 3.3% of 
interactions were common among the tools. The MiRTarBase analysis confirmed a small subset 
of the predictions. Biological pathway analysis highlighted the dysregulation of PI3K-Akt and Wnt 
signaling; miRWalk was the best for elucidating how miRNAs modulate target mRNAs in these 
key pathways during HNSCC progression. Conclusion: miRWalk emerged as the most robust 
tool for predicting miRNA-mRNA interactions. Our findings highlight the importance of integrating 
bioinformatics predictions with experimental data to better understand the regulatory networks in 
HNSCC and identify potential biomarkers for diagnosis and therapy.

Keywords: Squamous cell carcinoma of head and neck; MicroRNAs; Biomarkers; Gene expression; 
Target prediction tool; Computational biology; Algorithms

	❚ INTRODUCTION
Head and neck cancer is the seventh most common type of cancer worldwide.(1)  

In Brazil, >10, 000 deaths were caused by head and neck cancer in 2020, and 
22,890 new cases have been predicted for 2023-2025. The disease has a higher 
prevalence among men, among whom it was anticipated to rank among the 
top 10 cancers in 2023.(2) Head and neck squamous cell carcinoma (HNSCC) 
accounts for ~90% of this tumor type.(3) Head and neck squamous cell 
carcinoma comprises a heterogeneous group of tumors originating in the oral 
cavity, larynx, nasopharynx, oropharynx, and hypopharynx. It has an estimated 
5-year survival rate of 40-50%,(4) primarily due to delays in diagnosis and 
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treatment initiation, which is directly impacted by the 
lack of specific markers.(5)

MicroRNAs (miRNAs) are small non-coding RNA 
molecules that exert post-transcriptional regulatory 
functions in conjunction with the RNA-induced silencing 
complex (RISC). They target the 3’ untranslated region 
(UTR), 5’ UTR, or promoter region of mRNAs through 
base pair complementarity.(6) In addition to their biological 
role, miRNAs are candidate biomarkers owing to their 
dysregulated expression in tumor tissues; their small 
size makes them less susceptible to degradation in 
formalin-fixed paraffin-embedded (FFPE) tissues-the 
primary sources of clinical specimens.(7) Several studies 
have suggested that differentially expressed miRNAs 
act as oncomiRs, tumor suppressors, and prognostic 
markers in HNSCC.(8-12)

Owing to the heterogeneity in HNSCC tumors, 
there is currently no consensus on effective biomarkers. 
Further studies are needed to identify diagnostic and 
prognostic markers and elucidate tumor development, 
progression, and dynamics.

Identifying the targets of miRNA-mRNA interactions 
can aid in the discovery of miRNA regulatory networks. 
In this context, the most effective approach involves 
computational prediction followed by the validation of 
miRNA-mRNA interactions. Bioinformatic analyses 
have shown that a single miRNA can regulate the 
expression of several genes, and a gene can be controlled 
by multiple miRNAs. Therefore, the experimental 
validation of each potential miRNA target is impractical, 
costly, and time-consuming. Computational approaches 
for predicting miRNA targets simplify the process by 
expediting the selection and reducing the number of 
potential targets for validation.

Several miRNA-mRNA interaction prediction 
tools are available.(13) As described by Nazarov and 
colleagues,(14) some use data-driven methods and other 
target-based methods. Data-driven methods based on 
similarity use large transcriptomic datasets and advanced 
methods like correlation analysis and biclustering 
to accurately identify and prioritize miRNA-mRNA 
interactions, accounting for complexities and context-
specific relationships and improving the accuracy of 
interaction predictions. Data-driven methods based 
on matrix factorization integrate mRNA and miRNA 
expression data by decomposing the expression matrix 
into lower-rank matrices to capture data variability and 
identify shared latent variables. Target-based methods 
can be split into two categories, the first of which is 
target prediction, such as TargetScan,(15) DIANA-microT-
CDS,(16) miRDB,(17) STarMir,(18) miRGator,(19) miRGate,(20) 

and DeepMirTar.(21) By combining different features and 

correlations, these tools employ distinct algorithms and 
methodologies to predict miRNA targets, considering 
various features such as sequence complementarity, 
binding site conservation, thermodynamic stability, 
and experimental validation. Second, various online 
repositories have been developed for collecting data on 
experimentally validated interactions between mRNA 
and miRNAs, such as Diana-Tarbase,(22) miRTarBase,(23) 

miRecords,(24) and miR2Disease.(14,25,26)

In this study, we selected the most commonly 
used prediction tools to analyze potential miRNA 
targets in HNSCC. We validated the in silico results 
using molecular barcode hybridization technology 
(NanoString nCounter) for mRNAs and miRNAs 
in paired cancer and non-cancer FFPE tissues. This 
technology is particularly well-suited for situations 
involving small fragments and a high rate of RNA 
degradation, such as in FFPE samples. In addition, 
this platform does not require high computational 
performance or expertise in data analysis, making it 
ideal for clinical laboratory applications. 

	❚ OBJECTIVE
We aimed to compare the performance of miRNA-
mRNA interaction prediction tools, considering both 
experimental and literature evidence, in accurately 
representing the characteristics of head and neck 
squamous cell carcinoma tissues. 

	❚METHODS
Literature search for miRNA-mRNA interaction 
prediction tools and comparison using  
experimental results
We used PubMed Central to search for articles 
published in English from 2018 to 2024 containing the 
terms “MicroRNAs,” “mRNA-Gene,” “Expression 
Regulation,” “carcinoma,” “interaction,” and “prediction.” 
Tools were chosen based on their online availability and 
use of an original algorithm or curation method for 
identifying mRNA-miRNA interactions.

For comparison among tools, we used data on the 
differentially expressed miRNAs detected between 
HNSCC and cancer-free tissues, as input. The higher-
scoring gene targets for each tool, limited to 10% of the 
target gene set list (higher scores), were selected and 
compared with the differentially expressed mRNAs 
between HNSCC samples and cancer-free samples. 
Additionally, we also used the MiRTarBase database 
to search for experimentally validated miRNA-mRNA 
interactions.
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Study population and sample collection
The cohort comprised 18 patients with a confirmed 
anatomopathological diagnosis of oropharyngeal 
squamous cell carcinoma and 9 patients with laryngeal 
squamous cell carcinoma (Table 1). The average 
patient age was 58 years (range, 39-85 years) and the 
male/female ratio was approximately 4:1. Most of 
the patients were smokers or former smokers (Table 
1). All samples were obtained from patients treated 
at the Instituto de Cancer, Dr. Arnaldo Vieira de 
Carvalho (ICAVC, São Paulo, Brazil). Clinical TNM 
classification was performed according to the Union 
for International Cancer Control staging classification 
system for HNSCC.(27) This study was approved by the 
Institutional Review Board of Hospital Israelita Albert 
Einstein (CAAE: 94534318.3.0000.0071; # 3.780.449), 
and written informed consent was obtained from all 
participants. Analysis of hematoxylin and eosin (H&E)-
stained sections was performed by expert pathologists, 
who confirmed the presence of ≥50% tumor cells in all 
HNSCC samples.

RNA isolation
We used 21 tissue samples from patients with HNSCC 
(12 oropharynx and 9 larynx) for miRNA profiling, and 
12 HNSCC samples were used for mRNA expression 
analysis. Formalin-fixed paraffin-embedded tissue 
blocks were cut into 10μm-thick sections using a 
microtome and adhered to glass slides. Based on the 
H&E-stained slides, tumor and non-tumor areas were 
separately scraped using a scalpel and loaded into a 
1.5mL tube. Total RNA, including miRNA, was isolated 
from FFPE tissues using an AllPrep DNA/RNA FFPE 
kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. 

miRNA expression 
An nCounter Human v3 miRNA Expression Assay 
(NanoString Technologies, Seattle, WA, USA) was 
used for the miRNA profiling of 21 tissue samples 
from patients with HNSCC (n=12 oropharynx and 9 
larynx) using the total RNA isolated from HNSCC and 

Table 1. Clinical and pathological characteristics of the study group

Patient ID Age Sex TNM clinical classification Site Smoking 
status Alcohol consumption Assay

A1 50 Female T4N1M0 Larynx No No miRNA

A2 48 Male T1N0M0 Oropharynx Yes Former PanCancer and miRNA

A3 54 Male T4N0M0 Larynx Yes Yes miRNA

A4 69 Male T2N2aM0 Larynx Former Former miRNA

A5 43 Male T2N3bM0 Oropharynx Yes Former PanCancer and miRNA

A6 45 Male T1N2M0 Oropharynx No No PanCancer and miRNA

A7 46 Female T1N2M0 Oropharynx No No PanCancer and miRNA

A8 56 Female T2N0M0 Oropharynx Yes No PanCancer and miRNA

A9 67 Male T2N0M0 Oropharynx Former Former PanCancer and miRNA

A10 68 Male T3N0M0 Larynx Yes Yes miRNA

A11 39 Male T2N2aM0 Larynx Former Yes miRNA

A12 41 Male T3N1M0 Oropharynx Former Former miRNA

B1 67 Male T4N2cM0 Larynx Former Former miRNA

B2 69 Male T4N0M0 Oropharynx Yes Yes miRNA

B3 56 Male T4N0M0 Larynx Yes Yes miRNA

B4 60 Male T3N1M0 Oropharynx Former Former PanCancer

B5 48 Male T2N1M0 Oropharynx Yes Former miRNA

B6 54 Male T4aN0M0 Oropharynx Yes Former PanCancer

B7 69 Male T2N2bM0 Oropharynx Former Former PanCancer

B8 77 Female T4N2bM0 Larynx - - miRNA

B9 45 Male T4aN2bM0 Oropharynx Yes Yes PanCancer

B10 57 Male T3N2aM0 Oropharynx Yes Former PanCancer

B11 63 Male T4N2bM0 Oropharynx Former Former miRNA

B12 67 Male T4N2cM0 Oropharynx Yes Former miRNA

B13 85 Male T4aN0M0 Larynx Former Former miRNA

B14 70 Female T4N2aM0 Oropharynx Former Former miRNA

B15 59 Male T4aN3M0 Oropharynx Yes Former PanCancer
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cancer-free FFPE tissues (60-100ng), according to the 
manufacturer’s recommendations. Each cartridge was 
scanned with a 555 FOV using an nCounter Digital 
Analyzer. Data processing was performed using nSolver 
Analysis Software 4.0 (NanoString Technologies). 
Background subtraction was performed using the 
geometric mean of the negative controls plus one 
standard deviation, normalization to the geometric 
mean of the positive controls, and normalization to the 
geometric mean of the top 100 most highly expressed 
miRNAs. After normalization, we filtered miRNAs with 
fewer than three counts from >30% of the samples.

mRNA expression 
For mRNA, tumor and non-tumor FFPE tissue RNA 
from 12 patients with oropharyngeal squamous cell 
carcinoma were analyzed using the nCounter PanCancer 
Pathways Panel (NanoString Technologies). This tool 
offers fast and high-throughput multiplex capabilities for 
analyzing human gene expression. Each panel comes with 
770 genes from 13 cancer-associated canonical pathways 
representing the basic cancer biology [Notch, MAPK, 
STAT, PI3K, RAS, cell cycle, apoptosis, Hedgehog, APC 
(Wnt), DNA damage and repair control, transcriptional 
misregulation, chromatin modification, and TGF-β]. 
We used ~300ng RNA in the assay, according to the 
manufacturer’s recommendations. Samples with <100 
counts for 100% of the target mRNAs were excluded 
from further analysis. Data were normalized using 
the geNorm algorithm, which selects the most stable 
housekeeping genes that exhibit the least variation 
among the samples.

Statistical analysis
A two-tailed t-test was used to assess the miRNA counts 
obtained using the nCounter Human v3 assay and 
mRNA counts derived using the nCounter PanCancer 
Pathways Panel. nSolver Analysis Software 4.0 was used 
for statistical analysis, with significance set at p≤0.05 
for miRNAs and p<0.05 for mRNAs. Adjusted p-values 
corrected for multiple testing using the Benjamini-
Yekutieli method (assigned as FDR) were estimated for 
genes involved in key biological processes.

	❚ RESULTS
Most commonly used miRNA-mRNA interaction tools
Based on the literature search and accounting for the 
limitations of the keywords, a total of 247 articles were 
identified, of which 150 matched our inclusion criteria 
(Figure 1). 

Of the 150 studies, 67% used TargetScan 8.0, 46% 
miRDB, and 36% miRWalk 2.0. Thus, we selected these 
tools for our prediction analysis and used MiRTarBase 
to validate the predicted interactions.

TargetScan 8.0(17) is the most widely used miRNA-
mRNA interaction prediction tool, with the current 
version available since 2021. This tool predicts miRNA 
targets based on seed region complementarity and 
evolutionary conservation by applying a context score 
that reflects the potential of a miRNA-binding site 
for creating an effective miRNA-mRNA interaction, 
considering 14 parameters accounting for interactions 
in canonical and non-canonical sites. 

The miRWalk 2.0 database(28) contains results from 
the TarPmiR algorithm,(29) a random forest-based 
approach that predicts miRNA-mRNA interactions 
through the use of “decision trees” with set rules for 
decision making. It is similar to a fluxogram with “knots” 
where, if the condition is verified, flow is continued in 
the same direction, otherwise a different direction is 
taken towards the next knot. This approach integrates 
key features such as accessibility, seed match, flanking 
conservation, folding energy, the length of the largest 
consecutive pairings, the length of the target site, AU 
content, stem conservation, difference between stem 
and flanking conservation, m/e motif, and difference 
between the numbers of paired positions in the seed 
region and miRNA 3’ end to predict miRNA target 
sites.(29) 

miRDB(17) is another online database that uses 
the machine learning algorithm MirTarget(30) for 
target prediction. Together with the more commonly 
used miRNA-targeting features used for predicting 

Figure 1. Most used miRNA-mRNA interaction tools from PubMed search for 
2018-2024. The x-axis lists the tools that met the study inclusion criteria and 
y-axis shows the number of publications utilizing each tool
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interactions, this tool combines data from miRNA 
overexpression and crosslinking and immunoprecipitation 
binding experiments data to identify transcript targets 
associated with functional RISC complexes, providing a 
functional weight for the predictions.

The miRTarBase database(22) relies on experimentally 
validated interactions, curated data from the literature, 
and high-throughput experiments. miRTarBase 
includes interactions confirmed through methods 
such as reporter assays (western blotting, microarray 
experiments, and high-throughput sequencing). The 
database is compiled of data from manually reviewed 
scientific articles reporting validated miRNA-target 
interactions.

miRNAs and mRNAs expressed in HNSCC 
We identified 77 miRNAs that were differentially 
expressed between cancer and cancer-free areas; 38 and 
miRNAs were upregulated and downregulated in tumor 
tissues, respectively (Figure 2). For mRNAs, 154 were 
differentially expressed between cancer and cancer-free 
tissues; 87 were upregulated and 67 were downregulated 
in tumor tissues. Among the differentially expressed 

Table 2. Genes differentially expressed (p<0.05) in tumor tissue and previously 
described for HNSCC

Gene

Log2  
fold-change 

tumor versus 
non-tumor

Pathway Gene

Log2  
fold-change 

tumor versus 
non-tumor

Pathway

LAMC2 3.47 PI3K WNT4 1.44 Hedgehog, Wnt

E2F1 3.05 Cell Cycle - 
Apoptosis

SKP2 1.42 Cell Cycle - 
Apoptosis

PKMYT1 2.92 Cell Cycle - 
Apoptosis

CDK6 1.29 Cell Cycle - 
Apoptosis, PI3K

WNT7B 2.52 Hedgehog, Wnt ITGB4 1.22 PI3K

MCM2 2.32 Cell Cycle - 
Apoptosis

ITGA6 1.15 PI3K

CDC6 2.25 Cell Cycle - 
Apoptosis

ITGA3 1.12 PI3K

LAMB3 1.95 PI3K CDKN1C -1.07 Cell Cycle - 
Apoptosis

CCNA2 1.68 Cell Cycle - 
Apoptosis

Figure 2. MicroRNAs differentially expressed between tumor and non-tumor tissues (p≤0.05). Positive and negative fold-change describe upregulated and 
downregulated miRNAs in tumor tissue, respectively

genes, 15 were previously reported to be dysregulated 
in HNSCC (Table 2). These genes participate in the 
cell cycle, apoptosis, and PI3K, Wnt, and Hedgehog 
pathways (Table 2). 
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miRNA-mRNA interaction predictions and  
biological implications
We evaluated the potential mRNA targets of the 
differentially expressed miRNAs using the different 
prediction tools. Using the 77 differentially expressed 
miRNAs as input, we identified interactions with 154 
differentially expressed mRNAs in tumor tissues: 2,124 
interactions using miRWalk, 187 using miRDB, and 
82 using TargetScan (Figure 3), of which 42, 9, and 
17 were validated using MiRTarBase; however, none 
were previously associated with HNSCC. Notably, one 
miRNA can regulate multiple target genes, whereas a 
single gene can be regulated by several miRNAs.(31)

Only 3.3% (76/2,314) of the interactions were shared 
among at least two of the prediction tools. Only 2.4% 
(59/2,463) of the predicted interactions were validated 

using MiRTarBase. Although the three tools predicted 
three common interactions (Figure 3), these were not 
consistent with the experimentally validated database. 

Based on our data and the literature, the altered 
expression of mRNAs in this cohort promotes tumor 
progression by enhancing proliferative signals and PI3K-
Akt and WNT pathway activities. Figure 4 illustrates 
these alterations based on differentially expressed 
miRNAs and target genes predicted using at least 
one of the four tools. In tumor tissues, we identified 
the upregulation of genes involved in activating the 
cell cycle and DNA replication, and downregulation 
of miRNAs predicted to target these genes. miRWalk 
predicted the most interactions between miRNAs and 
mRNAs, followed by miRDB and TargetScan, with 111, 
seven, and five interactions, respectively (Figure 4).

Figure 3. Differentially expressed genes targeted by differentially expressed miRNAs between tumor and tumor-free tissues. MiRWalk, miRDB, and TargetScan 
databases were used to predict miRNA targets. The numbers of miRNA-mRNA interactions are presented in the Venn diagram
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Figure 4. Proposed model of how differently expressed mRNA and miRNA may contribute to tumor progression. The histogram represents the number of interactions 
predicted by each of the tools for differentially expressed mRNA and miRNA. miRNAs in red and green were downregulated and upregulated in tumor tissue, 
respectively. Green and red arrows represent upregulated and downregulated genes in tumor tissue, respectively. Genes in blue were differentially expressed (p<0.05). 
Genes in yellow had an adjusted p<0.05 (FDR)
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	❚ DISCUSSION
Several miRNA-mRNA interaction prediction tools 
have been developed, each applying distinct algorithms 
and methodologies to predict miRNA targets. 
These algorithms consider various features, such as 
sequence complementarity, binding site conservation, 
thermodynamic stability, and experimental validation, 
to promote the accuracy of these tools. 

Although TargetScan, miRDB, and miRWalk share 
similar features(32) (such as sequence complementarity, 
total number of paired positions, target site accessibility, 
and conservation), only ~3% of the miRNA-mRNA 
interactions was predicted by more than one of them. 
This is consistent with the 13% similarity previously 
reported between miRDB and TargetScan.(14) In 
another study, in which 10 of the top miRNAs with 
MiRTarBase-validated targets were analyzed using 
TargetScan, miRanda-mirSVR, Pita, and RNA22, 18% 
of the validated interactions were not predicted by any 
tool.(33) This suggests that biological processes may not 
be fully captured by prediction tools.

The best prediction tool in our study was miRWalk, 
since it had the highest numbers of predicted and validated 
interactions. Similarly, a previous study reported better 
performance for miRWalk among several prediction 
tools.(29) miRWalk also shared the most interactions with 
the other tools. 

Despite the low similarity between the different 
tools, they are the most commonly used among 
researchers in this field. This could be because of 
their continued updates and community involvement, 
whereas many other tools have been discontinued.(34) 

In terms of publication count, TargetScan was the most 
common, possibly because of the amount of information 
it provides and its pioneering role in predicting miRNA 
targets in vertebrate research.(35) In our study, TargetScan 
identified the fewest validated interactions, likely 
because of its high false negative rate and stringent 
criteria for interaction sites.(36) These criteria require 
high confidence, canonical interactions primarily within 
the 3’-UTR, and evolutionary conservation. In contrast, 
miRWalk is more flexible and inclusive, broadening 
the range of potential interactions to those with 
mismatches or noncanonical binding patterns across 
the entire mRNA. Notably, our analysis was limited to 
the top-scoring interactions from all four tools, which 
may have contributed to the lower perceived sensitivity 
of TargetScan.

The nCounter PanCancer Pathways Panel allowed 
us to identify differences in the expression of genes 
related to commonly dysregulated pathways in cancer. 
Genes involved in the PI3K pathway, which are crucial 

for cellular functions such as transcription, translation, 
proliferation, and survival, are often overexpressed in 
HNSCC.(37) We identified several candidate miRNA-
mRNA interactions that should be investigated as 
targets in HNSCC. Notably, integrin subunit alpha 3 
(ITGA3) and ITGA6 showed significantly increased 
expression in patients with HNSCC, with higher levels 
of ITGA3 linked to poorer overall and relapse-free 
survival rates.(38) We observed the downregulation 
of miR-150-5p and upregulation of ITGA6 in tumor 
tissues, consistent with the findings of Koshizuka et 
al.(38) This interaction was predicted only by miRWalk. 
Although it uses a combination of manual curation 
and machine learning methods to validate interactions 
with high accuracy (>82%), MiRTarBase did not 
capture this interaction, indicating possible limitations 
in curation. 

ITGB4 is upregulated in primary and metastatic 
HNSCC, associated with poor prognosis, and its 
knockdown reduces EGFR-mediated migration and 
invasion.(39,40) Overexpression of ITGA6 and laminin 
subunit gamma 2 (LAMC2) was previously reported 
in HNSCC; LAMC2 has been associated with poor 
prognosis and identified as a potential biomarker 
for cancer invasion.(41-44) Laminin subunit beta 3 
(LAMB3) enhances cisplatin sensitivity and reduces 
cell migration and invasion.(45,46) In our study, these 
genes were upregulated in tumor tissues and miRNAs 
predicted to interact with these genes were identified 
as less expressed in the tumor tissue. Collectively, these 
findings support the role of these genes in HNSCC 
tumorigenesis and progression.

Overactivation of WNT-β-catenin signaling promotes 
cancer cell proliferation and survival.(47) Consistent with 
our findings, Wnt family member 7 B (WNT7B) is 
upregulated in oral squamous cell carcinoma (OSCC), 
and in vitro knockdown of WNT7B in OSCC cell lines 
inhibits cell invasion.(48) Overexpression of WNT4 
in laryngeal cancer cell lines promoted the nuclear 
accumulation of β-catenin while knockdown of WNT4 
had the opposite results.(49) In our study, these genes 
were upregulated in tumor tissues corroborating the 
literature, while miRNAs predicted to have these genes 
as targets were found with less expression in tumor 
tissue, such as miR-30a and miR-150.

Genes that regulate the cell cycle and apoptosis are 
crucial for tumor progression and cell proliferation. In 
our tumor samples, we observed the overexpression 
of S-phase kinase-associated protein 2 (SKP2) and 
downregulation of cyclin-dependent kinase inhibitor 
1C (CDKN1C). Notably, SKP2 expression has been 
correlated with shorter overall survival in patients 
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with HNSCC(50) and is often inversely associated with 
CDKN1C expression in various cancers.(51,52) In OSCC, 
positive CDKN1C staining was correlated with higher 
5-year survival rates. Additionally, CDKN1C mRNA 
expression decreased from leukoplakia with moderate 
or severe dysplasia to OSCC.(53) Consistent with other 
studies, we observed the upregulation of protein kinase 
membrane-associated tyrosine/threonine 1 (PKMYT1), 
cyclin A2 (CCNA2), minichromosome maintenance 
complex component 7 (MCM7), cell division cycle 6 
(CDC6),(54-56) cyclin-dependent kinase 4 (CDK4), and 
CDK6, which are potential immunotherapy targets 
in HNSCC.(57,58) Additionally, we observed reduced 
expression of miRNAs (such as miR-145, miR-30a-3p, 
and let-7c-5p) predicted by miRWalk to target CDK6 
and we found these interactions validated in miRTarBase 
database.(59-61) Further research into these regulatory 
networks may unveil new therapeutic strategies and 
biomarkers for the better management and prognosis 
of this challenging disease.

Changes in the cellular phenotype of tumor cells 
reflect changes in the expression of several genes caused 
by different carcinogenic and/or biological processes. 
Here, we hypothesized that differences in mRNA 
expression between tumor and non-tumor tissues may 
be partially caused by differences in miRNA expression, 
as supported by the miRNA-mRNA interaction tools. 
Our study provides useful information for elucidating 
the mechanisms of tumor progression in HNSCC, 
especially given the current lack of biomarkers. 

In summary, depending on the research aim, our 
findings demonstrated the effective use of TargetScan 
and miRWalk for gaining a broad overview of potential 
interactions, miRDB for gaining functional insights, 
and miRTarBase for validation. Although the focus of 
miRTarBase on experimentally validated interactions 
may enhance reliability, it may limit the scope of the 
results. Combining these four tools may address some 
of their separate limitations while complementing 
their strengths. Although these methods are suitable 
for preliminary investigations, the predictions should 
be supplemented with experimentally validated data 
to ensure biological relevance. Through experimental 
validation, we identified miRWalk as the most 
appropriate tool for assessing how miRNAs modulate 
differentially expressed target mRNAs in HNSCC, 
followed by miRDB and TargetScan. Considering 
the limitations of each database, miRWalk enables 
comprehensive exploration by integrating data from 
the other three databases, offering a well-rounded 
approach to studying miRNA interactions.

	❚ CONCLUSION
Databases and online tools provide excellent resources 
for the initial review and identification of miRNA and 
mRNA interactions. However, their output must be 
interpreted cautiously, considering the limitations of 
each method.
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