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	❚ Highlights
	█ Gradient Boosting Machine and Random Forest models 
were built for prediction of mortality at cardiac intensive 
care units.

	█ A total of 9,761 intensive care unit stays of patients 
admitted under a Cardiac Surgery and Cardiac Medical 
services were studied.

	█ The AUROC and AUPRC values were significantly superior 
to seven conventional systems compared.

	█ The machine learning models’ calibration curves were 
substantially closer to the ideal line.
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	❚ ABSTRACT
Objective: Logistic Regression has been used traditionally for the development of most 
predictor tools of intensive care unit mortality. The purpose of this study is to combine shared 
risk factors between patients undergoing cardiac surgery and intensive care unit cardiology 
patients to develop a risk score for prediction of mortality in cardiac intensive care unit patients, 
using machine learning. Methods: Gradient Boosting Machine and Distributed Random Forest 
models were developed based on 9,761 intensive care unit-stays from the MIMIC-III database. 
Sequential and static features were collected. The primary endpoint was intensive care unit 
mortality prediction. Discrimination, calibration, and accuracy statistics were evaluated. 
The predictive performance of traditional scoring systems was compared. Results: Machine 
learning models’ AUROC and AUPRC were significantly superior to all conventional systems 
for the primary endpoint (p<0.05), with AUROC of 0.9413 for Gradient Boosting Machine and 
0.9311 for Distributed Random Forest. Sensitivity was 0.6421 for Gradient Boosting Machine, 
0.6 for Distributed Random Forest, and <0.3 for all conventional systems except for serial SOFA 
(0.6316). Precision was 0.574 for Gradient Boosting Machine, 0.566 for Distributed Random 
Forest, and <0.5 for all conventional systems. Diagnostic odds ratio was 58.8144 for Gradient 
Boosting Machine, 51.2926 for Distributed Random Forest and <34 for all conventional systems. 
Brier score was 0.025 for Gradient Boosting Machine and 0.028 for Distributed Random Forest, 
being worse for the traditional systems. Calibration curves of Gradient Boosting Machine and 
Distributed Random Forest were substantially closer to the ideal line. Conclusion: The machine 
learning models showed superiority over the traditional scoring systems compared, with 
Gradient Boosting Machine having the best performance. Discrimination and calibration were 
excellent for Gradient Boosting Machine, followed by Distributed Random Forest. The machine 
learning methods exhibited better capacity for most accuracy statistics. 

Keywords: Cardiac surgery procedures; Ensemble learning; Mortality; Intensive care units; Risk 
factors; Calibration 

	❚ INTRODUCTION
Mortality risk prediction scores have an important function in intensive care 
units (ICUs). Patients in ICUs have more severe physiologic derangement and 
consequently a higher risk of mortality.(1) Implementation of these tools may 
help identify high-risk patients and reduce preventable deaths,(2,3) potentially 
resulting in improvements in ICU care and outcomes. 

Despite improvements in surgical techniques and perioperative care, 
cardiac surgery operations still have a risk of mortality. Patients’ responses 
to cardiac surgery and cardiopulmonary bypass (CPB) are particular to the 
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postoperative cardiac surgery ICU patients, showing 
temporary pathophysiological changes which may 
influence many variables captured by the general ICU 
scoring systems. However, most of these changes have a 
limited effect on outcomes.(4)

These patients are susceptible to multiple interventions 
that are also very common in the cardiology ICUs, in 
addition to the shared primary physiological and clinical 
manifestations of predominant heart diseases among 
cardiac surgery and cardiology patients. Appropriate 
mortality risk assessment of this subgroup of patients 
is essential for monitoring the health evolution of 
these patients in the ICU, where primary cardiac 
derangements can lead to imminent severe critical 
events and death. 

Several general ICU scoring algorithms are widely 
established and are used for evaluating the severity 
of critical illness and anticipating mortality. These 
include the SOFA,(5) SAPS,(6) SAPS II,(7) SAPS III,(8) 
LODS,(9) and the OASIS.(10) Although postoperative 
cardiac surgery patients or specifically cardiac ICU 
patients were not included during their creation, these 
scoring systems are widely used for risk estimation 
after cardiac surgery and in cardiac ICUs.(11)

Specific risk models have been created to estimate 
the mortality risk of cardiac surgery, mainly using 
preoperative data.(11) The EuroSCORE and the STS risk 
stratification algorithms are the two main preoperative 
risk models in cardiac surgery.(12) EuroSCORE II, 
created using logistic regression (LR), was better 
calibrated than EuroSCORE, preserving powerful 
discrimination.(13) 

Nilsson et al. contrasted 19 risk score models 
regarding their ability to predict 30-day and 1-year 
mortality following cardiac surgery. Discrimination 
was significantly higher for logistic(14) and additive(15) 
EuroSCORE models, followed by Cleveland Clinic(16) 
and Magovern(17) systems.(18)

Disease-specific risk scores for the population of 
cardiac surgery patients have also been developed. 
For example, Ariyaratne et al. created a multi-variable 
LR model using preoperative data to anticipate early 
mortality following aortic valve replacement (AVR) 
in adults. Their model (AVR-Score) showed good 
discrimination and calibration.(19) Wang et al. compared 
four different risk scores for predicting in-hospital 
mortality following heart valve surgery (EuroSCORE II, 
Ambler risk score, NYC risk score, and STS). The four 
risk scores gave an imprecise prediction for individual 
risk in patients undergoing multiple valve surgery.(20-22)

Other risk algorithms have been created for cardiac 
surgery patients using postoperative variables, such as the 
Vasoactive-Inotropic Score (VIS), which was developed 
initially to predict mortality and morbidity following 
pediatric cardiac surgery.(23) It has been examined recently 
in adults.(11) The discrimination for unfavorable outcome 
of VISmax was better than APACHE II, SAPS II, and 
similar to SOFA. Calibration revealed a good fit.(11)

Lamarche et al. developed a score that incorporated 
both preoperative and intraoperative features building 
a multiple LR model that estimated 30-day mortality 
after adult cardiac surgery. Their model’s AUROC 
decreased when rerun using only preoperative variables. 
They argued that mortality risk also needs to be assessed 
immediately after surgery because the surgery constitutes 
a turning point.(24)

An ICU scoring system specifically developed 
for general adult cardiac surgical patients to estimate 
mortality risk using postoperative data is the CASUS.(4) 

The initial CASUS, an additive algorithm, was created as a 
tool for daily mortality risk classification in ICU patients 
admitted following cardiac surgery.(25) The logistic variant 
of the additive CASUS (Log-CASUS) showed a clear 
superiority to the logistic EuroSCORE and the additive 
CASUS.(4) Doerr et al. did not find any improvement by 
merging a preoperative and a postoperative scoring 
model. Therefore, they recommended a separate 
computation of the two scores.(2)

Disease-specific scores have been created for 
several subsets of cardiology patients. A multi-variable 
LR model was developed for in-hospital mortality risk 
estimation by Granger et al., for patients with acute 
coronary syndromes with and without ST-segment 
elevation. This algorithm can be utilized as a simple 
nomogram to assess risk in individual patients.(26) The 
GWTG-HF Program was developed by Peterson et al. 
for individual prediction of risk of in-hospital mortality 
in patients hospitalized with heart failure (HF). The 
model had good discrimination and calibration.(27) The 
ADHERE study recognized BUN, serum creatinine, 
and systolic blood pressure (SBP) as the best predictors 
of in-hospital mortality in patients with HF. This model 
stratifies patients as low, intermediate, or high risk.(28)

The only score developed for hospital mortality risk 
prediction for general adult ICU cardiology patients 
is the model developed by Jentzer et al. This score 
identified risk predictors available at ICU admission to 
develop the M-CARS using LR. The M-CARS showed 
discrimination and calibration superior to conventional 
ICU risk scores.(29)
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Many of the scoring systems mentioned above 
can allow clinicians to estimate preoperatively the 
mortality risk following cardiac surgery. However, 
very few are designed to calculate the mortality risk 
after undergoing cardiac surgery. Preoperative risk 
stratification may help in the choice among cardiac 
surgery and other therapeutic modalities.(18,22) 

However, it omits the surgery results failing to consider 
intraoperative and postoperative variables.(22)

In addition, most of the available cardiac ICU 
outcome prediction models, as well as the established 
severity-of-illness scoring systems, collect static risk 
factors around the time of ICU admission ignoring 
changes in patient status, which is considered in the 
current work by measuring the variation of variables 
over time. 

Most of the predictor tools developed to date 
that estimate mortality following cardiac surgery or 
in cardiology patients use LR to compute the score, 
as well as the majority of the conventional severity-
of-illness systems. There is increasing evidence that 
machine learning (ML) models can provide a more 
accurate outcome prediction than LR in the ICU.(30-32) 

Ensemble modeling has been widely used in surgery 
literature.(33) Machine learning approaches can 
overcome the statistical limitations of LR regarding 
the assumptions of independence of observations, 
such as in repeated measurements, and the absent 
multicollinearity among the independent features.(34) 

Physiologically, it is likely that intercorrelations exist 
between many homeostatic and clinical variables. 

This research is built upon previous work by the 
author,(35) seeking to refine the previous models and 
trying to further improve the predictive performance. 

	❚ OBJECTIVE
This research aimed to create a predictive tool using 
ensemble machine learning techniques for intensive 
care unit mortality for individual adult patients 
admitted to the intensive care unit under a Cardiac 
Surgery or a Cardiac Medical service. 

	❚  METHODS
Patient cohort 
The MIMIC-III critical care database version v1.4. 
was utilized, a large dataset containing de-identified 
clinical data of over forty thousand patients admitted 
to ICUs between 2001 and 2012 at the tertiary care 
hospital Beth Israel Deaconess Medical Center 
(BIDMC) in the United States. It contains high 

temporal resolution ICU data, collected from 
Metavision and CareVue bedside monitors.(36,37)

A retrospective study was performed. A final 
cohort of 9,761 ICU-stay patient records was used, 
selected as shown in the CONSORT Flow Diagram of 
table 1. Code in PostgreSQL language created for the 
selection of the ICU-stays is accessible at.(38)

Table 1. CONSORT Flow Diagram used to plot the flow of data selection of the 
patient cohort

All distinct ICU-stays in MIMIC-III

n=61,532



Exclude ICU-stays of patients of age <16 years old

n=8,109



Exclude ICU-stays of patients admitted to the BIDMC under a service  
different from the Cardiac Medical or Cardiac Surgery services 

n=38,373



Exclude ICU-stays with a length-of-stay and survival <36 hours following ICU admission 

n=5,289



Study cohort of distinct ICU-stays
n=9,761

Patients with multiple re-admissions to the ICU were included as distinct ICU-stays. 
ICU: intensive care unit.

Study design
Data were extracted during a 6-hours window to 
produce 12-hours advance predictions by the ML 
models developed. The ML models were contrasted to 
the severity-of-illness scores of OASIS, SAPS, SAPS II, 
SAPS III, LODS, SOFA and serial SOFA. The threshold 
of 36-hours length-of-stay was selected to permit 
24-hours of data gathering in the ICU for computation 
of the conventional scores, as the calculation interval 
for these scores is the first 24-hours of ICU stay (except 
for 1-hour for SAPS III). 

This threshold allows then to make a prediction at 
12-hours before patient death/discharge from the ICU 
by the ML models and conventional systems. The ML 
methods were also contrasted to the serial SOFA, which 
is computed also at 12-hours before patient death/
discharge, calculated from the immediately preceding 
24-hours of data.(39,40) The established systems’ scores 
were calculated using open-source code complementing 
the MIMIC-III database.(41) 

The primary endpoint was all-cause mortality 
prediction during the ICU stay. The secondary endpoint 
was all-cause in-hospital mortality prediction for the same 
hospital admissions of the corresponding ICU stays. 

https://www.statisticssolutions.com/multicollinearity/
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Data collection
Variables collected were of type sequential and static. 
The 1-hour time-resolution physiological and laboratory 
variables extracted during 6 consecutive hours in the 
ICU consisted of heart rate (HR), pH, pulse pressure, 
respiratory rate, blood oxygen saturation, SBP, mean 
blood pressure, temperature, hemoglobin, lactate and 
white blood cell count. These relevant variables are 
commonly available in the ICU (Table 2).

The cardiovascular evaluation is of great interest 
in cardiac ICU patients, that is why several of the 
sequential features were selected. Blood lactate levels 
have previously been identified as a predictor of 
mortality in ICU patients(4,42) and therefore lactate was 
included. Hemoglobin was selected as in.(34)

Static features were collected as demographic 
variables at the time of ICU admission comprising type 
of ICU admission, gender, ethnicity, and age. The static 
clinical features consisted of the need of vasopressors 
during the ICU stay, the use of dialysis, and several 
ICD-9 procedures and diagnoses documented on 
discharge (Table 2). 

The demographic features were selected because 
they have demonstrated to be essential mortality risk 
factors. Ethnicity has an empiric association with 
outcomes and has been included in many mortality 
predictor tools.(12,27,43) Admission type was selected 
based on (3,11-15,24) (Table 2).

Use of inotropes and vasopressors indicates 
severity of patient condition and therefore was 
selected based on.(5,11-13,24) The diagnosis of cardiac 
arrest was reported as an independent risk factor 
for mortality in previous studies.(26,29,44) Primary 
pulmonary hypertension, a well-known prognostic 
factor in cardiac surgery, is associated with augmented 
morbidity and mortality and therefore was selected 
based on.(3,13-15,22,24,43) Myocardial infarction was selected 
based on,(12-15,34,43) and atrial fibrillation/flutter based 
on.(3,12,26) Renal function is important in predicting 
ICU outcomes and therefore the need for dialysis was 
selected based on.(3,4,12,13,34,43,44) Ventricular assist device 
(VAD) implantation was selected based on,(4,24) and 
extracorporeal membrane oxygenation (ECMO)/CPB 
based on.(24,44) Pressure ulcers were selected based 
on(29,45) (Table 2).

For a single missing hourly value, a last observation 
carried forward imputation was used. For a missing 
value in the first hourly measurement of the 6-hours 
window, mean imputation was used. 

Table 2. Patient variables extracted for developing the ML models. Diagnoses and 
procedure variables were obtained based on ICD-9 codes

Sequential variables
(Time window=6 hours) Static variables

Physiologic HR, pulse 
pressure, 

respiratory rate, 
blood oxygen 

saturation, 
SBP, mean 

blood pressure, 
Temperature

ICU 
admission 

kind 
(admission_

type)

elective, urgent, or emergency

Laboratory* pH, 
hemoglobin, 

white blood cell 
count, blood 
lactate levels

Race 
(ethnicity_
grouped)

white, black, hispanic, asian, native, 
unknown, other

gender

age at ICU 
entrance 

(patient_age)

Angioplasty 
or stent(s) 

(angio_stent)

PTCA, Status-post PTCA, Open chest 
coronary artery angioplasty, Insertion 

of non-drug-eluting or drug-eluting 
coronary artery stent(s)(35)

VAD (vad) Implant of Single Ventricular 
(Extracorporeal) External Heart Assist 

System, Insertion of temporary 
non-implantable extracorporeal 

circulatory assist device, Insertion of 
(percutaneous external) heart assist 

device(35)

vaso_flag norepinephrine, epinephrine, 
phenylephrine, vasopressin, dopamine, 

or isoprenaline

ppulm_
hypert 

Primary pulmonary hypertension

dialysis Renal dialysis status, Peritoneal 
dialysis, Hemodialysis

myocardial_
infarction

Acute myocardial infarction of 
anterolateral wall, other anterior wall, 
inferolateral wall, inferoposterior wall, 
other inferior wall, other lateral wall, 

other specified sites, unspecified site; 
Old myocardial infarction

cardiac_
arrest

Cardiac arrest, Personal history of 
sudden cardiac arrest

cpb_ecmo Percutaneous cardiopulmonary bypass, 
Extracorporeal circulation auxiliary to 
open heart surgery, ECMO, History 

of ECMO

pressure_
ulcer 

Pressure ulcer of buttock, unspecified 
site, elbow, upper back, lower back, 

hip, ankle, heel, other site, unspecified 
stage, stage I, stage II, stage III, stage 

IV, unstageable

atrial_fib_flu Atrial fibrillation, atrial flutter
* As these laboratory features were quantified less frequently than hourly, their interval for extraction was extended 23 
hours backward for their first hourly measurement of the 6-hour window.
HR: heart rate; ICU: intensive care unit; VAD: ventricular assist device; PTCA: percutaneous transluminal coronary angio-
plasty; ECMO: extracorporeal membrane oxygenation.
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Machine learning models
Data were loaded into KNIME (KNIME AG, Zurich, 
Switzerland)(46) to build the ML models. The input 
dataset was split randomly into two partitions, 80% 
for training and 20% for testing. The same testing data 
(n=1,953) were used to assess the performance of all 
ML models and conventional systems compared. 

The ML models created were the Distributed 
Random Forest (DRF) and Gradient Boosting Machine 
(GBM). These models are provided by H2O®, 
implemented in KNIME.(46) These models are of the type 
of ensemble learning. The DRF classification model 
is built with Bagging. Gradient Boosting Machine for 
classification is a forward learning ensemble algorithm, 
built with Boosting.(46) A parameter optimization loop 
was used in order to locate the optimal parameters for 
the ML methods.(46) 

Performance evaluation
Discrimination was evaluated using the AUROC and 
ROC curves, together with the precision recall curve 
(PRC) and AUPRC,(47) which ignore the amount of 
true negatives (TNs) and can be useful for problems 
with class imbalance. The AUROC and AUPRC were 
calculated for all models for both outcomes. 

It was hypothesized that the ML models created 
would be superior to the conventional systems in 
discrimination. This hypothesis was tested for both 
outcomes. The difference among the AUROCs 
was calculated with the method of DeLong et al.(48) 

The comparison of paired PRCs provided the 95% 
bootstrap CIs for the AUPRC differences.(49) MedCalc® 
Statistical Software version 20.111 (MedCalc Software 
Ltd, Ostend, Belgium; https://www.medcalc.org; 2022) 
was used for statistical analyses.

Calibration of the models was evaluated with the 
Brier score. This was calculated for both outcomes 
for the ML methods, OASIS, SAPS II and SAPS III. 
Calibration curves were created by Moving average 
algorithm for these models for the primary endpoint. 

Sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and diagnostic 
odds ratio (DOR) were assessed for the primary 
endpoint for all models. The optimal criterion values 
to estimate these statistics were calculated taking into 
account not only sensitivity and specificity, but also 
the ICU mortality prevalence, and the costs of false 
positive (FP), true positive (TP), false negative (FN), 
and TN. 

Ethics approval
The Institutional Review Boards of the BIDMC and 
the Massachusetts Institute of Technology (USA) 
approved the MIMIC-III database development. 
Individual consent to participate was waived because 
the project did not influence clinical care and all 
protected health information was anonymized. (Beatriz 
Nistal-Nuño was formally approved to access this 
database).

	❚  RESULTS
Out of the 9,761 ICU-stays, 570 patients died during 
the ICU stay. That represents a prevalence of 5.83% 
of ICU mortality. A total of 750 patients died during 
the same hospital admission of the corresponding ICU 
stays, representing a prevalence of 7.68% for in-hospital 
mortality. 

Figure 1 displays the ROC curves for all models 
evaluated for ICU mortality prediction, which shows 
an AUROC of 0.9413 for GBM, 0.9311 for DRF, and 
≤0.778 for all conventional systems except for serial 
SOFA (0.8722) (Table 3).

Table 3 shows the AUROC for all models evaluated 
for in-hospital mortality prediction, with an AUROC 
of 0.892 for DRF, 0.897 for GBM, and ≤0.7486 for the 
traditional systems except for serial SOFA (0.8237).

Figure 2 shows the PRCs for the ML methods and all 
severity-of-illness systems for ICU mortality prediction. 
The AUPRC was 0.62 for DRF, 0.671 for GBM, and 
≤0.184 for all the traditional systems except for serial 
SOFA (0.587) (Table 3). 

Table 3 shows the AUPRC for the ML methods and 
all severity-of-illness systems for in-hospital mortality 
prediction. The AUPRC was 0.534 for DRF, 0.599 for 
GBM, and ≤0.211 for the traditional systems except for 
serial SOFA (0.519).

The sensitivity was 0.6421 for GBM, 0.6 for DRF, 
and <0.3 for all the traditional systems except for serial 
SOFA (0.6316). The specificity was ≥0.9499 for all 
systems. The PPV was 0.574 for GBM, 0.566 for DRF, 
and ≤0.476 for all the traditional systems. The NPV 
was >0.94 for all systems. DOR was <34 for all the 
traditional systems. However, DOR reached 58.8144 
for GBM, and 51.2926 for DRF (Table 3).

The Brier score for the primary endpoint was 0.025 
for GBM, 0.028 for DRF, 0.059 for OASIS, 0.05 for 
SAPS III, and 0.101 for SAPS II. The Brier score for 
in-hospital mortality prediction was 0.0408 for GBM, 
0.0445 for DRF, 0.072 for OASIS, 0.062 for SAPS III, 
and 0.107 for SAPS II (Table 3). 
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Figure 1. ROC curves for mortality prediction in the cardiac intensive care units for the machine learning methods and severity-of-illness systems

Table 3. Performance of the machine learning methods and severity-of-illness systems for prediction of mortality in the cardiac intensive care units, and in-hospital 
mortality* 

DRF GBM OASIS SAPS III SAPS II LODS SOFA Serial SOFA 
(sofa_24hours) SAPS

Optimal criterion value# >0.2405 >0.1401 >44 >81 >63 >9 >12 >6 >27

AUROC for ICU 
mortality (95%CI)†

0.9311
(0.907 -0.956)

0.9413
(0.920 -0.963)

0.7282
(0.672 -0.785)

0.7599
(0.709- 0.811)

0.778
(0.730- 0.826)

0.7172
(0.660- 0.775)

0.735
(0.682-0.788)

0.8722
(0.829- 0.915)

0.702
(0.647- 0.757)

AUROC for in-hospital 
mortality (95%CI)†

0.892
(0.865 -0.919)

0.897
(0.869 -0.924)

0.6848
(0.634-0.736)

0.7486
(0.705-0.792)

0.7473
(0.703- 0.792)

0.6901
(0.641- 0.740)

0.6862
(0.638-0.735)

0.8237
(0.782- 0.866)

0.6461
(0.595- 0.697)

AUPRC for ICU 
mortality (95%CI)‡

0.620
(0.519 -0.712)

0.671
(0.571 -0.758)

0.169
(0.106 -0.258)

0.184
(0.119 -0.275)

0.161
(0.0998 -0.249)

0.159
(0.0981 -0.246)

0.171
(0.108- 0.260)

0.587
(0.486- 0.681)

0.132
(0.0777- 0.216)

AUPRC for in-hospital 
mortality (95%CI)‡

0.534
(0.449 -0.617)

0.599
(0.514 -0.679)

0.176
(0.120 -0.250)

0.211
(0.150 -0.288)

0.186
(0.129 -0.262)

0.179
(0.123 -0.254)

0.191
(0.133- 0.267)

0.519
(0.435- 0.603)

0.145
(0.0951- 0.216)

Sensitivity 0.6 0.6421 0.2632 0.2105 0.1895 0.2 0.0947 0.6316 0.1789

Specificity 0.9715 0.9704 0.9499 0.9672 0.9699 0.9666 0.9935 0.9516 0.9699

PPV 0.566 0.574 0.246 0.285 0.281 0.271 0.476 0.447 0.269

NPV 0.975 0.978 0.954 0.952 0.951 0.951 0.947 0.977 0.95

DOR 51.2926 58.8144 6.7435 7.817 7.488 7.2168 16.12 33.4358 6.9882

Brier score** for ICU 
mortality

0.028 0.025 0.059 0.05 0.101

Brier score** for  
in-hospital mortality

0.0445 0.0408 0.072 0.062 0.107

*Results shown were calculated from testing set (n=1953); #The thresholds shown were used to calculate the accuracy statistics, calculated taking into account prevalence of mortality (5.83%) and estimated costs (cost FP=1, cost FN=4, cost TP=0, cost 
TN=0); †The 95%CI was calculated as AUROC ± 1.96 Standard Error; ‡The 95%CI was calculated with the method of Boyd et al;(49) **The Brier score was calculated as the average squared error of the prediction.
DRF: Distributed Random Forest; GBM: Gradient Boosting Machine; ICU: intensive care unit; PPV: positive predictive value; NPV: negative predictive value; DOR: diagnostic odds ratio.
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Calibration curves are displayed in figure 3. The 
diagonal line represents the ideal calibration curve. The 
curves for GBM and DRF were substantially closer to 
this ideal line. 

The ML models’ AUROCs and AUPRCs were 
significantly superior (p<0.05) to all conventional 
systems for the primary and secondary endpoints, except 
for DRF over serial SOFA for the secondary outcome 
for the AUPRC (Table 3).

In view of the application of these ML models, it 
is essential for clinicians to know the reasons behind 
predictions. The SHAP algorithm was applied, which 
explains patient-specific predictions. The Shapley Value 
of a feature for a specific patient denotes how much the 
feature has conferred to the divergence of the actual 
prediction from the mean prediction.(46,50) 

The SHAP algorithm was applied to GBM. The 
ICU stay whose prediction of ICU mortality was chosen 
to be explained corresponded to a male patient of 71 
years old, admitted as elective to the ICU, who did not 
survive to ICU discharge. This patient had a myocardial 
infarction and cardiac arrest and received vasopressors 
and dialysis. He had atrial fibrillation/flutter presenting 
HR >100 bpm and SBP <88 mmHg. This patient was 
correctly classified by GBM, assigning him a probability 
of mortality of 0.8661 (Figure 4). 

	❚ DISCUSSION
From the results for ICU mortality prediction, GBM 
showed the highest AUROC followed by DRF. The 

traditional systems showed much lower values except 
for serial SOFA. The same pattern was noticed for 
the secondary outcome. The superiority of the ML 
models’ AUROCs was statistically significant for both 
outcomes. 

For the primary outcome, the AUPRCs were higher 
for GBM and DRF, and much lower for the traditional 
systems except for serial SOFA. A similar pattern was 
obtained for the secondary outcome. The superiority 
of the ML models’ AUPRC was statistically significant 
for both outcomes, except for the comparison between 
DRF and serial SOFA for the secondary outcome. 

The high values of AUROC and AUPRC for the 
GBM and DRF indicate that the discriminatory power 
of these two models for predicting cardiac ICU 
mortality was excellent, significantly surpassing the 
traditional systems. The slight drop in AUROC and 
AUPRC for in-hospital mortality prediction for the  
ML methods can be explained because the ML models 
were designed for prediction of ICU mortality. 

The sensitivity was much higher for the ML 
methods over the traditional systems, except for serial 
SOFA. The specificity was very high for all models. The 
PPV was low for the traditional systems. However, PPV 
was intermediate for the ML methods. The difficulty 
to reach a high PPV is due to the very low frequency 
of ICU mortality in the cohort. The PPV of 0.476 for 
SOFA should be interpreted as being lower than that as 
the optimal cutoff value selected for SOFA turned out 

Figure 2. Precision recall curves for the machine learning methods and severity-of-illness systems for cardiac intensive care unit mortality prediction
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to be very high, yielding therefore a very low sensitivity 
of 0.0947 producing then much fewer FP. The higher 
PPV for the ML methods is important for a predictor 
in the ICU, indicating a low rate of FP. However, the 
cost of FN was established as much higher than FP 
for the calculation of the optimal threshold values 
because of the importance of not missing any patients 
that would end up dying in the ICU. The costs of FN 
and FP can be adjusted at the criteria of clinicians in 
order to calculate the optimal thresholds, but when 
using high thresholds, clinicians would be advised to 
take more caution in their decision-making for patients 
estimated at low risk by the model.(31)

Diagnostic odds ratio was substantially higher 
for the ML methods over the conventional systems, 

HR: heart rate; SBP: systolic blood pressure; RR: respiratory rate; So2: blood oxygen saturation; T: temperature; wbc: white 
blood cell count; pp: pulse pressure; mbp: mean blood pressure; lact: blood lactate levels; vad: ventricular assist device.

Figure 4. SHAP Algorithm for a correctly predicted non-survivor in the cardiac 
intensive care unit by the GBM. Shapley values are depicted on the horizontal axis. 
The cardiac arrest is the feature with the biggest Shapley value, having the greatest 
contribution towards mortality. Use of vasopressors and dialysis contributed also 
notably towards mortality. Atrial fibrillation/flutter and elevated age contributed also 
towards mortality. The elective admission contributed towards survival

of which serial SOFA showed the best value. This is 
important as DOR is based on the positive and negative 
likelihood ratios that are independent of mortality 
prevalence, while PPV and NPV are highly dependent 
on mortality prevalence. 

The results showed the superiority of serial SOFA 
over the static SOFA. This was to be expected because 
in SOFA, calculated from the first 24-hours of ICU 
admission, for example the cardiovascular measurement 
is performed based on the inotropes and vasopressors 
needed. However, extensive use of these medications 
in the early postoperative stage of cardiac surgery 

Figure 3. Calibration curves for intensive care unit mortality prediction. Top left: 
GBM. Top right: DRF. Medium left: OASIS. Medium right: SAPS III. Bottom left: 
SAPS II. For each probability yielded by the model for the endpoint variable, the 
plot shows the actual frequencies in the cohort observed for all cases for which 
the model yielded that probability
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might lead to unrealistic high scores for SOFA in all 
the cardiac surgery patients. The importance of given 
vasopressors likely increases over time in the ICU, then 
it can be captured by serial SOFA. The ML models 
further improve the serial SOFA by including more 
variables in order to assess the cardiovascular system.(40) 

Lower values of the Brier score reflect better 
calibration. The Brier scores were stronger for the ML 
methods, which is visualized by the excellent calibration 
curves obtained for GBM and DRF.

The goal of this research was achieved, as better 
results were obtained in comparison to previous work.(35) 

This higher performance is mainly due to stricter 
patient selection criteria, a slightly wider time window, 
and the use of powerful ML algorithms in a workflow 
design that avoids overfitting. 

In comparison to LR, the ML methods used have 
the practical strengths that they are adequate for 
nonlinear data and nonlinear relationships between 
features and log odds of outcomes, and they are robust 
to correlated features and feature distributions.

The lack of transparency is mitigated by the applied 
explainer algorithm. The SHAP algorithm provides 
understanding of how the ML algorithms arrived at 
the individual predictions (Figure 4), giving insight 
into the importance of features. 

The cardiac ICU exemplifies the scenario where 
the dynamic interdependency of various risk factors on 
the survival clinical outcome is most prominent, where 
ML algorithms have unique strengths compared to LR 
or a weighted summation of scores. When prognoses 
are not immediately clinically apparent, these ML 
models could provide clinicians a more informed 
decision regarding potential short-term survival 
outcomes.(31,32) The models developed in this work 
provide the possibility to examine changes in mortality 
risk over time if predictions are generated at pre-
defined intervals with updated patient data.

The utility of these ML models, containing over 60 
variables, will likely depend on the ease with which they 
can be used. For this reason, future work should provide 
easy-to-use prediction support tools for clinicians. An 
application should be provided in the form of a user 
interface accessible in the ICU that would be integrated 
with available electronic medical records data.(31,32) 

The single institution assessment is a limitation of 
this work. It would be recommended to conduct a multi-
center based study to further validate these findings.

	❚ CONCLUSION
The excellent predictive abilities of these machine 
learning models further advance the science of cardiac 

intensive care unit risk modeling, suggesting they 
could be used for early recognition of cardiac patients 
at high risk of mortality so as to improve outcomes. 
Nonetheless, no scoring model can replace clinical 
assessment at a patient’s bedside, they can only act as 
an objective instrument in decision making.
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