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ABSTRACT
Objective: To present the frequency of single nucleotide polymorphisms 
of a few immune response genes in a population sample from São 
Paulo City (SP), Brazil. Methods: Data on allele frequencies of 
known polymorphisms of innate and acquired immunity genes were 
presented, the majority with proven impact on gene function. Data 
were gathered from a sample of healthy individuals, non-HLA identical 
siblings of bone marrow transplant recipients from the Hospital das 
Clínicas da Faculdade de Medicina da Universidade de São Paulo, 
obtained between 1998 and 2005. The number of samples varied 
for  each  single nucleotide polymorphism  analyzed by polymerase 
chain reaction followed by restriction enzyme cleavage. Results: 
Allele and genotype distribution of 41 different gene polymorphisms, 
mostly cytokines, but also including other immune response genes, 
were presented. Conclusion: We believe that the data presented 
here can be of great value for case-control studies, to define which 
polymorphisms are present in biologically relevant frequencies and to 
assess targets for therapeutic intervention in polygenic diseases with 
a component of immune and inflammatory responses.
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RESUMO
Objetivo: Apresentar a frequência de polimorfismo de nucleotídeo 
único de alguns genes da resposta imune em amostra populacional 
da cidade de São Paulo (SP). Métodos: Foram apresentadas as 
frequências de alelos de conhecidos polimorfismos de genes de 
imunidade inata e adquirida, a maioria com impacto funcional 
comprovado. Os dados foram coletados a partir de amostras de 
indivíduos saudáveis, irmãos não-HLA idênticos, de receptores de 

transplante de medula óssea do Hospital das Clínicas da Faculdade de 
Medicina da Universidade de São Paulo, obtidos entre 1998 e 2005. 
O número de amostras variou para cada polimorfismo de nucleotídeo 
único analisado por reação em cadeia pela polimerase seguida de 
clivagem com enzimas de restrição. Resultados: Apresentou-se a 
distribuição de alelos e genótipos de 41 polimorfismos genéticos, 
a maioria de genes para citocinas, mas também incluindo outros 
genes de resposta imune. Conclusão: Acreditamos que os dados 
apresentados aqui possam ser de grande valor para definir quais os 
polimorfismos presentes em frequências relevantes, para estudos 
caso-controle e para avaliar alvos de intervenção terapêutica 
nas doenças poligênicas com componente de resposta imune ou 
inflamatória.

Descritores: Polimorfismo genético; Imunidade inata; Citocinas

INTRODUCTION
Over the last years, it has become increasingly clear that 
individual genetic variation is an essential component 
of overall immune responses that contributes to 
susceptibility, progression, and outcome of infectious 
and autoimmune diseases, and cancer. Innumerable 
studies have uncovered the extent of human genetic 
variation while trying to map their role in multifactorial 
and polygenic diseases. These studies showed that there 
are different types of variants, ranging from single 
nucleotide polymorphisms (SNPs) with one sole base 
change to repetitive short- and medium-sized sequences, 
as well as copy number variations, which may extend 
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throughout large segments of chromosomes. Individual 
genomes are currently being analyzed in the 1000 
Genomes Project to catalogue the full extent of human 
genetic variation. Previous efforts like HapMap focused 
on SNPs aiming to map gene variants that affect health, 
disease, and individual responses to medications and 
environmental factors. Today, the number of known 
SNPs is in the range of 10 million and HapMap is 
estimated to contain 80% of all SNPs with frequencies 
of >10%(1) (useful web links are listed in Appendix 1). 
These projects have a common characteristic, namely, 
the mapping of hundreds of thousands of allelic variants. 
Useful variants for these genome-wide association 
studies (GWAS) typically exhibit frequencies between 
0.5 and 5% and a great number of cases and controls 
is needed to obtain statistical power. For example, a 
90% power to detect an allele with 1% frequency, with 
a risk factor of 2 GWAS, demands approximately 20,000 
individual samples(2). This number can be considerably 
lower (~300) for a rare allele frequency of roughly 
10%. A good example are the studies conducted by 
the Wellcome Trust Case Control Consortium, which 
analyzed several thousand individuals in genome-
wide scans in order to map the genetic risk for type 2 
diabetes, rheumatoid arthritis, and Crohn’s disease, to 
name a few of the target diseases studied(3). 

On the other hand, pooling samples can also pose 
a problem. Disease heterogeneity and population 
differences act as confounding factors, hindering 
identification of relevant genes due to the small effect 
many of the variants have on the disease itself. 

Studying the genetic background of Brazilian 
populations has always been a challenging issue. Not 
only there is a high degree of miscegenation, but the 
input from different migratory currents differs from one 
region to another. Amerindian, Caucasian, and African 
ethnicities contributed to this true “melting pot” since 
the very beginning of colonization five centuries ago by 
the Portuguese. Studies aiming to assess the relative 
contribution of the three races forming the gene pool 
of the Brazilian population through matrilinear(4) and 
patrilinear(5) descent, using mtDNA and chromosome 
Y-based methods, confirm historical data of 
crossbreeding between European men and Amerindian 
and African women(6,7).

In the Southeast region of Brazil where São Paulo 
is located, the composition of the mixture includes a 
majority of Italians, Spaniards, and Germans. However, 
this region also received a significant input from 
Africans and Indigenous peoples. In addition, as the 
most populated city in South America, São Paulo has 
always been an important destination of migrants from 
other places in Brazil and from neighboring countries. 
To account for the genetic admixture, some surrogate 

markers, such as skin color, are employed in many 
studies. However, Parra et al.(6) showed that in Brazilians 
this is a poor substitute for the assessment of individual 
ancestry. We chose to analyze healthy individuals coming 
from the same socioeconomic strata as the patients seen 
at the largest hospital in São Paulo. These individuals 
mirror the great diversity present in the population 
of the city of São Paulo, and though ancestry markers 
were not analyzed, we feel the information should be 
reported in order to be available for fellow researchers 
in the field when searching for candidate genes for case-
control studies of the many different types of diseases 
that affect 19 million inhabitants of the extended 
metropolitan region of São Paulo.

The data shown in this paper include allele 
frequencies of known polymorphic genes in innate and 
acquired immunity, the majority with proven impact on 
gene function. Most of the polymorphisms shown here 
have an impact upon transcription levels. Others lead to 
changes in the binding strength to their corresponding 
ligands and/or in intracellular signal transduction, and 
even in the half-life of messenger RNAs. 

The scope of this paper does not include detailed 
information on the genes or their polymorphisms, which 
can be assessed in good textbooks(8).

Innate immunity genes
The innate immune system relies on the presence of 
pathogen-associated molecular patterns (PAMPs) 
on microbial surfaces resulting in the activation of 
effector cells capable of clearing infection and inducing 
inflammation in this process. These pattern recognition 
molecules can be cell-associated, as is the case for Toll-
like receptors (TLRs)(9,10), or soluble as in the case of 
the mannose-binding lectin family of proteins(11). 

TLRs are predominantly expressed in antigen-
presenting cells, either on the surface (TLR 1, 2, 4, 6) 
or in the cell (TLR 3, 7, 9). Each recognizes a specific 
PAMP-like Gram-negative bacterial lipopolysaccharide 
(TLR-4), flagellin (TLR-5), single-stranded (TLR-7) 
or double-stranded (TLR-3) viral RNA, bacterium-
derived CpG DNA (TLR-9). TLR-4 is the major 
representative of the family, and is known to respond 
to exogenous and endogenous ligands, participating 
in inflammation and local tissue responses to wounds, 
hypoxia, or other forms of stress. Diminished response 
to lipopolysaccharides was mapped to amino acid 
substitutions in the TLR4 gene(12).

The complement system can be activated in different 
ways, one of which is the lectin pathway, initiated by 
mannose-binding lectin (MBL), reviewed in detail 
by Dommett et al.(13). MBL is an acute phase reactant 
that binds to mannose, sugars, and other microbial 
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compounds by way of the lectin domain. Once activated, 
the cascade begins with the cleavage of C4 and C2, by 
MBL-activated MASP-1 and -2. It is intriguing that 
MBL-2, the functional form of MBL in humans, harbors 
polymorphisms in coding regions leading to non-preserved 
amino acid substitutions. In addition, there are promoter 
polymorphisms in strong linkage disequilibrium, which 
result in extended haplotypes. Of notice, the frequency of 
these alleles varies greatly worldwide and many different 
diseases, infectious or otherwise were studied(13). 

Interleukin 10 and receptor genes
IL-10 is the prototypical down-regulating effector 
cytokine in immune response. Its action is crucial 
for control of inflammation accompanying immune 
responses. Absence of IL-10 in animal models of disease 
leads to tissue damage, autoimmunity, or chronic 
infection. IL-10 is produced by many different immune 
cells, such as macrophages and dendritic cells, TH1, TH2, 
and TH17 lymphocytes. It counteracts the production 
of pro-inflammatory interferon-γ and increases the 
differentiation of regulatory T cells(14). The gene encoding 
IL-10 is highly polymorphic, presenting several variants 
in the 5´ and promoter regions with impact on in vitro and 
in vivo production(15,16). IL-10 exerts its actions through 
the specific heterodimeric IL-10 receptor, where chain 1 
is responsible for high affinity binding(17).

Immunomodulatory genes in the MHC class III region
Several immunomodulatory genes are located in the 
MHC class III region. In addition to the well-known 
inflammatory cytokines tumor necrosis factor alpha 
(TNF-α) and lymphotoxin alpha (LT-α), functional 
polymorphisms are being studied in recently described 
genes, like HLA-B associated transcript 1 (BAT1), 
nuclear factor of kappa light polypeptide gene enhancer 
in B-cells inhibitor-like 1 (NFKBIL1), and leukocyte-
specific transcript 1 (LST1)(18). The exact functional role 
of these three genes is not yet clear. 

BAT1, the most telomeric of the three genes, is a 
DEAD-box RNA helicase, one of several genes in this 
region involved in RNA processing(19) and, importantly, 
a target for immune evasion by cytomegalovirus(20). 
NFKBIL1, a protein with some homology to the IκB 
family, was suggested to be involved in the control of 
cytosolic nuclear transcription factor-kappa B (NF-κB), 
a major molecule governing the transcription of over 200 
different immune response genes(21). A detailed paper(22) 
recently showed that NFKBIL1 is expressed in all tissues, 
and that the protein is present in macrophages and T 
cells in the synovium of rheumatoid arthritis patients. 
Furthermore, in spite of the apparent homology, this 

product binds mRNA and seems to function in RNA 
processing. Finally, LST1 is translated into multiple 
isoforms with varying expression according to cell 
type and induction form. Expression in immune cells 
is widespread and, as a rule, leads to diminished 
lymphocyte proliferation.

IL-4, -5, -13, and receptor genes
IL-4 is a pleiotropic cytokine essential for IgE synthesis 
in B cells and for T cell differentiation into the TH2 
phenotype(23). Th2 cells secrete IL-4, IL-13, and IL-5. 
Mast cells also secrete IL-5 and this interleukin activates 
eosinophils. IL-5, together with IL-4 and IL-13, is deeply 
involved in the induction and maintenance of allergic 
processes. The functions of IL-13 in immune surveillance 
and in TH2 type immune response partially overlap with 
IL-4, but IL-13 also has an impact on tissue eosinophilia, 
as well as tissue remodeling and development of fibrosis(24). 
Both IL-4 and IL-13 genes harbor functionally relevant 
polymorphisms. The biological activity of these two 
cytokines occurs through binding on target cells to their 
specific receptor. IL-13, which shares several biological 
functions with IL-4, operates through the IL-13 receptor, 
a heterodimer formed by the shared IL-4R alpha chain 
and IL-13R alpha chain. 

Other cytokine and chemokine genes
A great variety of cytokines, chemokines, growth 
factors, and other molecules are produced in 
the beginning or during expansion of innate and 
acquired immune responses. The type of trigger, the 
site of the tissue, and the combination of the input of 
different molecules will shape the nascent immune 
response, defining the predominant type of cell and 
portfolio of effector molecules produced, according 
to Amsen et al.(23) and Pulendran et al.(25). The pro-
inflammatory cascade of events is well-known, and two 
of the classical effector molecules involved are IL-12 
and interferon gamma (IFN-γ). In addition, monocyte 
chemoattractant protein 1 (MCP-1) and chemokine 
C-C motif receptor 5 (CCR5) are, respectively, 
chemokine and chemokine receptor playing major 
roles in proinflammatory events(8). Cytotoxic T 
lymphocyte-associated protein 4 (CTLA-4) is an 
essential ligand governing activity of T lymphocytes. 
Thus, functional polymorphisms which modify levels 
or efficiency of any of these molecules may impact 
the outcome of the immune response due to the shift 
in balance of inflammatory and regulatory responses. 
The polymorphisms presented here have been widely 
studied, and have been found to play a role in several 
infectious and autoimmune diseases.
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OBJectiVe
To present the frequency of SNPs of some immune response 
genes in a population sample from São Paulo city.

MetHODS
Subjects
Data in this study were gathered from a sample of 
healthy individuals, non-HLA identical siblings of bone 
marrow transplant recipients from the Hospital das 
Clínicas da Faculdade de Medicina da Universidade 
de São Paulo, obtained between 1998 and 2005. These 
individuals underwent clinical and laboratory screening 
as possible donors, and were deemed fi t for donation, 
but were dismissed due to MHC incompatibility with 
respective recipients. Samples were obtained after 
informed consent and permission from the Ethics 
Committee of the hospital. Since the sample number 
varied for each SNP analyzed, numbers (n) are shown 
in tables 1-5.

Dna extraction and genotyping
Blood samples were drawn and DNA was 
extracted by dodecyltrimethylammonium bromide/
cetyltrimethylammonium bromide (DTAB/CTAB)(26) 
or alternatively, by salting-out methods(27).

rFlP-Pcr genotyping
There was no deviation from expected Hardy-
Weinberg proportions in any of the genes analyzed. 
For genotyping of all SNPs, 100 ng genomic DNA 
was used. Polymorphisms were typed by PCR-RFLP 
as described elsewhere (additional information on the 
SNPs presented is available in Appendix 2 and upon 
request). Briefl y, PCRs were performed in a fi nal 
volume of 25 µL containing 100 ng genomic DNA, 40 
uM of dNTP and 0.2 U of Taq polymerase, 1.5 mM of 
MgCl2, 0.25 pM of each primer. In some cases, protocols 
employed 2.0 mM of MgCl2 and 0.5 pM of each primer. 
PCR was usually carried out with an initial 5-minute 
denaturation step at 95°C followed by 35 cycles at 95°C 
for 20 seconds, annealing for 30 seconds, followed 
by an extension at 72°C for 20 seconds and a fi nal 
extension step of 5 to 7 minutes at 72°C. An aliquot 
of 10 uL of the PCR product was digested for 3 hours 
with the specifi ed restriction enzyme (New England 
Biolabs), in a total volume of 20 uL at the temperature 
specifi ed by the manufacturer. Digested products were 
separated by electrophoresis on 2 to 4% agarose gel, 
stained with ethidium bromide, and visualized under 
ultraviolet (UV) light. 

table 1. Genotype and allele frequencies of innate immunity gene polymorphisms 
in a sample of healthy individuals 

SNP: single nucleotide polymorphism; AF: allele frequencies.
* codon; ** C+D+E, which corresponds to variants in positions 52,54,57.

table 2. Genotype and allele frequencies of  IL-10 and IL-10 receptor gene 
polymorphisms in a sample of healthy individuals 

SNP: single nucleotide polymorphism; AF: allele frequencies. * codon.

reSUltS
Allele and genotype distribution of 41 different gene 
polymorphisms, mostly cytokines, but also including 
other immune response genes, are shown in tables 1-5.
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DiScUSSiOn
In this article we present a series of allele and genotype 
frequencies of known and novel immune response genes. 
Though these genes show a modest contribution to the 
overall phenotype, it is important to detail the effects each 
gene has in the development and progression of a given 
disease. The sum of multiple genetic and environmental 
factors leads to different clinical presentations and 
therapeutic responses in each patient(28). Thus, the study of 
signifi cant numbers of patients carrying the same disease, 
as well as the comparison between similar diseases (for 
example, autoimmune diseases), opens the way to identify 
relevant mechanisms in their pathophysiology. Genetic 
polymorphisms, such as those shown in this article, were 
associated with a variety of autoimmune, infl ammatory, 
and infectious diseases, ranging from celiac disease and 
rheumatoid arthritis to acute myocardial infarction, 
Chagas’ disease, and viral hepatitis.

The majority of polymorphic sites in the genome 
is common in populations worldwide, and variants 
exhibit moderate frequency(29), implying that most 
have gone through a balancing selection, that is, 
they have been preserved because in addition to 
imparting susceptibility to certain diseases, they also 
have a benefi cial role according to the environmental 
background of the populations. Two important points 
should be made concerning some of the polymorphisms 
we have studied that showed very low frequencies (for 
example TNF-α238 and TLR5 +1174). Low frequencies 
impact the statistical power and a greatly increased 
number of samples need to be examined to reach 
signifi cance in association studies. When the impact of 
the variant upon a phenotype is low, the issue is further 
complicated. In candidate gene studies, in which cases 
and controls typically number only in the hundreds, this 
is an important issue and should be taken into account 
when choosing target genes. On the other hand, genes 
with greater effects can be reliably analyzed. 

Some considerations may help circumvent or lessen 
the impact of the issues pointed out here before: fi rst and 
foremost, a robust hypothesis based on clinical evidence 
is needed. It should be noted that while genome-wide 
screening does not employ a priori hypotheses, case-
control studies will benefi t from correlation with data 
obtained through careful clinical follow-up and detailed 
laboratory data. The choices of additional markers in 
the same gene or chromosome region, the analysis in 
subsequent independent samples, the use of two to four 
times more controls than patient samples, and care to 
avoid hidden population structure, which can result 
in false differences, are additional points to be taken 
into account. Although many claims of associations 
have been published, few are subsequently replicated, a 
problem affecting GWAS studies as well(2,30).

table 3. Genotypes and allele frequencies (AF) of MHC III gene polymorphisms in 
a sample of healthy individuals 

SNP: single nucleotide polymorphism; AF: allele frequencies.

table 4. Genotypes and allele frequencies of IL-4, IL-5, IL-13, and receptor gene 
polymorphisms in a sample of healthy individuals 

SNP: single nucleotide polymorphism; AF: allele frequencies.

table 5. Genotypes and allele frequencies of several immune response gene 
polymorphisms in a sample of healthy individuals 

SNP: single nucleotide polymorphism; AF: allele frequencies: * wild type; ** deletion.
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However, as pointed out by Eric Lander et al.(2), 
there is still a role for association studies. The primary 
value of genetic mapping is not risk prediction, but 
providing novel insights about mechanisms of disease. 
Knowledge of disease pathways can suggest strategies 
for prevention, diagnosis, and therapy.

CONCLUSION
Finally, though ancestry was not defined in our study 
population, we believe that the data presented here can 
be of great value for case-control studies, to define which 
polymorphisms are present in biologically relevant 
frequencies, and to assess targets for therapeutic 
intervention in polygenic diseases with a component of 
immune and inflammatory responses. 
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BAT1 -22 rs2239527 C/G Ramasawmy R, Cunha-Neto E, Faé KC, Müller NG, Cavalcanti VL, Drigo SA, et al. BAT1, a putative anti-inflammatory gene, is 
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SNP: single nucleotide polymorphism.
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